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ii
GENERAL

This is the fourth conference on Mathematics and Computers in Sport, and they have all
been held at Bond University. Previous conferences were in 1992, 1994 and 1996. Once
again researchers have come with many different backgrounds in sport applications.

This conference features at least one paper where computers have made a direct and
substantial contribution to the outcome. On the other hand, at least one other paper seems
to have direct application to coaching techniques.

We would like to thank the three invited speakers John Croucher (Macquarie), Tony Lewis
(West of England) and Chris Harman (Southern Queensland) for their willingness to
contribute to the success of the conference, as well as to all other participants for their
contributions.

We would also like to thank Michelle Brown who has been indispensable in formatting
these conference proceedings and helping us with many other tasks pertaining to the
smooth running of the conference.

Neville de Mestre

and

Kuldeep Kumar
Conference Directors, 1998.
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2.00 pm I. Heazlewood and G. Lackey - “Mathematical models that predict performance decline in elite
veteran athletes 30-90 years in the sprint, distance and jump events”

2.30 pm G. Lackey and I. Heazlewood - “The use of mathematical models to predict elite swimming
performance”

3.00 pm G. Christos - “The AFL finals: It’s more than a game”
3.30 pm J. Cross - “Scheduling”

Tuesday 14 July
9.00am T. Lewis - “Developments in the Duckworth-Lewis (D/L) method of target resetting in one day
cricket matches”
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3.00 pm R.J. Neal, S. McLean, W. Daniel and P. Myers - “In vivo predictions of ACL stress and strains
during sidestepping”
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Wednesday 15 July

9.00 am C. Harman - “”Who's on first!” “What?” “What’s on second!” and how ‘What’ got there on an
optimal baserunning path”

10.00 am G.L. Cohen - “The Subject: Mathematics in Sport”

10.30 am Morning Tea
11.00 am A. Patterson and S.R. Clarke - “An analysis of team statistics in Australian rules football”
11.30 am W.H. Cogill - “The mathematics of bicycling: Part II”

12.00noon  N.J. de Mestre - “Optimising the shot put”
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USING COMPUTERS AND SCIENTIFIC METHOD TO DETERMINE OPTIMAL
STRATEGIES IN TENNIS

John S. Croucher’

Abstract

This study traces the development of strategies for playing tennis during the past
forty years, from simple probability models to the more sophisticated techniques
involving modern technology. A comparison is made between various serving
strategies and probabilities of success are calculated from different scorelines, with
the importance of each point played also being considered. Data recording
techniques using computers and video-recorders are discussed and an illustration
made using actual information from a Wimbledon Men’s Final.

1. INTRODUCTION

Tennis has filled the research literature over the years with an abundance of
mathematical papers attempting to analyse the game from a variety of perspectives.
Many papers are theoretical in nature and based on arguable assumptions, while
others draw conclusions using data recorded from actual matches. In recent years,
the advent of sophisticated recording techniques using computers has enhanced the
way in which tennis can be analysed, with every facet of the game now being
examined in minute detail.

This paper traces the development of tennis research over the past twenty-five years,
including some of the classical findings that are referenced time and again in modern
studies. Only the essential mathematical equations will be shown, with the emphasis
being on the conceptual results. The interested reader is encouraged to explore the
appropriate reference for a fuller explanation.

2. SERVICE STRATEGIES

An important area of study in tennis is the effectiveness of a player’s serve. In
professional tennis in particular, players are expected to win their service games and
failure to do so results in a ‘break’ of their serve that can lead to the loss of the set. It
is not surprising that much research has been directed at analysing the tennis serve,
not only service strategies but also ways in which the return of serve can neutralise a
server’s advantage.

School of Economic and Financial Studies, Macquarie University NSW 2109



2 John S. Croucher

Strong and Weak Service Strategies

In one of the earliest papers of its type, Kemeny and Snell [1] used a Markov chain
approach to model a single game of tennis. Some time later Hsi and Burych [2]
presented a probability model for games involving two players in which they used
the game of tennis as one of their illustrations and calculated the probability that one
player wins a single set of ‘classical’ (i.e. non tie-breaker) tennis. As is the case with
much of the theory-based research, it was assumed that the probability that a player
wins a point on serve is constant throughout the match and that the points played
are independent. While these assertions may not be entirely accurate in all cases, they
certainly permitted the development of a multitude of mathematical results that
provided some interesting, if debatable, conclusions. To provide some ammunition
in support of these assumptions, Pollard [3] examined 5503 points played in 35
championship matches and showed that neither of these assumptions could be
rejected on statistical grounds

Two opponents on the professional tennis circuit are nearly certain to meet each
other several times during the year under relatively similar situations (although,
presumably different playing surfaces were also taken into account). In this way, it
was claimed (George [4]) that the required probabilities could be estimated with
‘reasonable precision’. George [4] also used these probabilities to uncover a service
strategy which maximised the probability of a player winning a point on serve.
Although a simple attempt to do this was made two years earlier by Gale [5], it is the
paper by George that is considered by many to be pioneer work in the field and is
worthy of some discussion here.

The rules of tennis give a player two chances to make a proper service on each point,
George correctly claimed and that most experienced players approach the first serve
differently from the second, which is only used if the first serve is faulted. As a result,
tennis players usually possess two types of serve. One, labelled the ‘strong’ serve, is
traditionally used on the first service. This serve generally gives a high probability of
winning the point to the server, given that the serve is good. The second serve,
labelled as the ‘weak’ serve, is usually reserved for the service following an initial
fault. Although this serve gives a reduced probability of winning the point given that
is good, it has the advantage of a higher probability of actually being good. The
relative efficacy of the two serves can vary markedly from player to player.

A probability model for winning a service point was developed for this situation
using the following definitions:

P(A) = the probability of the server winning the point (Event A)

P(S) = the probability of a non-faulted strong serve (Event S)

P(W) = the probability of a non-faulted weak serve

P(A1S) = the conditional probability that the server wins the point if the serve is
strong and not faulted

P(AIW) = the conditional probability that the server wins the point if the serve is
weak and not faulted

P(AS) = the probability of the player serving a non-faulted strong serve and
winning the point
=P(AIS)P(S)
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P(AW) = the probability of the player serving a non-faulted weak serve and
winning the point
=P(AIW)P(W)

It follows that, if a player follows the usual strategy of using an initial strong serve
followed by a weak serve if the initial serve is faulted, then:

P(A) = P(AIS)P(S) + P(A | W)P(W)[1 - P(S)] (1)

However, the above strategy is not the only one available, since there are four
possible combinations of sequences of strong and weak serves. The probabilities for
each of these combinations are shown in Table 1.

Table 1

Probability model of winning according to service strategy

Strategy First serve Second serve P(A)
1 Strong Weak P(AS) + P(AW)[1 - P(S)]
2 Strong Strong P(AS)[2 - P(S)]
3 Weak Weak P(AW)[2 - P(W)]
4 Weak Strong P(AW) + P(AS)[1 - P(W)]

Since it is reasonable to assume that P(A|S) > P(A|W), it follows that Strategy WS
will always be inferior to Strategy SW and should never be used. If we define:

R=[1+P6S)-PW)]" and Z =P(AW)/P(AS)
then, from Table 1, it can be shown that:

Strategy SWis optimal if 1<Z <R
Strategy SS is optimal if Z<1<R
Strategy WW is optimal if 1<R<Z

Unfortunately for George, in the early 1970s no detailed data were kept routinely on
professional matches, and so he was obliged to personally record information from
two matches to illustrate his point. (This was one of the first attempts at data
recording techniques that are considerably more sophisticated today.) The first of
these CBS Tennis Championship matches played on clay was held on 27 August 1971
between John Newcombe (Australia) and Arthur Ashe (USA). The second match was
the final played next day between Newcombe and Rod Laver (Australia). Newcombe
won the first match 6-4, 7-5 while Laver won the final 6-2, 6-4. Hence, serving data
were collected for two of Newcombe’s matches (204 service points) and one each for
Laver (85 service points)and Ashe (86 service points).

Based on the estimates from these games, it was found that 1 < Z < R in all cases, and
so Strategy SW was optimal for all three players. However, only in Laver’s match
with Newcombe was the evidence reasonably strong, with his P(A) = 0.66 for
Strategy SW while only being 0.54 for Strategy SS. For Ashe v Newcombe, the P(A)
values for Strategy SW were 0.56 and 0.63 for the two players, respectively, while for
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Strategy SS they were 0.53 and 0.60, respectively. In the final, Newcombe’s P(A) was
0.52 using Strategy SW and 0.50 using Strategy SS.

A full account of the probabilities in all matches can be found in George’s paper, but
what made this research of particular interest was its combination of theoretical work
with at least a crude attempt to record actual data to produce an interesting result.
Indeed, if enough data were collected on modern players, Strategy SS using a second
strong serve could well be an option that should be used more often depending on
the opponent.

Several years later, George’s results were employed (King and Baker [6]) to rank the
strategies using more extensive data, this time from ten matches among world-class
women players during the 1976 Virginia Slims tournament played on indoor courts.
Once again the authors recorded the data by hand. Interestingly, they reached a
similar conclusion to George in that they found the usual strong serve — weak serve
strategy was by no means clearly superior to the other strategies. Indeed, they
concluded that by adopting the conventional SW Strategy, players actually reduce
their match-winning chances if they do not consider maximising their own strengths
relative to those of their opponents.

As an example, a player strong in volley execution may be wise to use a SS strategy
throughout a match since they have an increased chance of success by coming into
the net following a strong serve. For players using the conventional SW strategy,
improvement of rallying strength following a successful strong service (P(A |S)) was
clearly the most potent factor in improving point-winning probability. In all cases,
such improvements would have been much more effective than improving
proportions of good first services P(S).

Service Strategies within the Context of a Match

The importance of the effect of improving service point-winning probability in
relation to the probability of winning the match was already well-known at the time
of these papers, (Carter and Crews [7], Hsi and Burych [2] and Weinberg et al. [8]). In
a more recent analysis of serving strategies (Croucher [9]) video replays were used to
investigate the serving performance of the two Men’s Wimbledon finalists in 1994,
namely Pete Sampras (a right-handed player from the USA) and Goran Ivanisevic (a
left-handed player from Croatia). In this match, Sampras was heavily favoured (as
the No. 1 seed) while Ivanisevic (the No. 4 seed) was only given an outside chance.
The match was notable for its unusual scoreline of 7-6, 7-6, 6-0 to Sampras. (These
two players met again in the 1995 semi-final where Sampras won a much closer
contest 7-6, 4-6, 6-3, 4-6, and 6-3.) This paper illustrates how match analysis can be
used to develop strategies for play, and some of the relevant details of the contest are
discussed below.

The total points won in each set by each player are shown in Table 2. Overall, 206
points were played of which 118 (57%) were won by Sampras and 88 (43%) by
Ivanisevic. However, Sampras won 24/31 (77%) of the points in the final set to
emphasise his dominance at the finish.
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Table 2

Points won (Sampras v Ivanisevic, 1994 Wimbledon Men's Singles Final)

Player Set 1 Set 2 Set 3 Total
Sampras 50 44 24 118
Ivanisevic 44 37 7 88

Total 94 81 31 206

Overall, Sampras won 76 (75.2%) of his 101 service points while Ivanisevic won 63
(60%) of his 105 serves. Interestingly, 25 (40%) of Ivanisevic’s winning service points
were due to an ace, emphasising his reliance on a strong first serve. Croucher [9] then
examined the match video-tape in more detail to uncover any strengths or
weaknesses in serving patterns. In particular, service points were classified according
to whether they were an ace, double fault, and made from the backhand or forehand
court. The results are shown in Table 3, including from which court the service was
made which was a significant factor since the proportions of points won in each case
varied markedly.

From a tactical point of view, with Sampras being right-handed and Ivanisevic being
left-handed, serving from the forehand court or backhand court may not bear the
same significance for each player. In particular, Sampras won 80% of points he
served from the forehand court but only 70% from the backhand court, while
Ivanisevic won 68% from the forehand court but only 52% from the backhand court.
Hence for both players, serving from the forehand court brought the largest success,
although Ivanisevic served nearly two-thirds of his aces from the backhand court.
However, when he couldn’t produce an ace from there, he won only 11 of the
remaining 27 points (41%), thus placing an extremely heavy reliance on his
producing a clean winning first serve.

Table 3

Percentage of service point outcomes for Sampras v Ivanisevic
(1994 Wimbledon Men'’s Singles Final)

Server Court served Points  won Points lost
from Ace Other Double fault Other
Sampras | Forehand 14.8% 66.7% 5.5% 13.0%
Backhand 19.2% 51.1% 4.2% 25.5%
Ivanisevic | Forehand 17.0% 50.9% 0.0% 32.1%
Backhand 30.8% 19.2% 5.8% 44.2%

One of the major deficiencies in Ivanisevic’s service game was his poor record in
winning points on his second serve from the backhand court. In fact, of his 19 serves
from that court he manage to win only 6 points (32%) compared to winning 13/21
(62%) of second serves from the forehand court. Interestingly, in his first five service
games of the match, Ivanisevic lost the second point played (all served from the
backhand court) in each game (every time trying to serve to Sampras’ backhand)
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until finally winning the second point of his sixth service game with an ace out wide
to the backhand. Ivanisevic should not have persisted with such a poor tactic
throughout the match. A superior strategy would have been to try a stronger second
serve from the backhand court and randomly mixing the direction by occasionally
serving to Sampras’ forehand.

The combination of service court and direction of serve for each player is
summarised in Tables 4 and 5. Table 4 shows Sampras’ outstanding success rate for
serving to Ivanisevic’s forehand by winning all 16 points from the forehand court
and 7 out of 8 from the backhand court for an overall success rate of 96%. This was in
marked contrast to his efforts at serving to Ivanisevic’s backhand in winning 27/38
(71%) serves he made from the forehand court and 26/39 (67%) made from the
backhand court. Given his relatively lower success rate serving to Ivanisevic’s
backhand it would have been a much better strategy for Sampras to serve more often
to his Ivanisevic’s forehand, clearly his weak point. In fact, all of Sampras’ five
double faults were attempts to serve to Ivanisevic’s backhand.

Table 4

Service points won-lost by Sampras
(1994 Wimbledon Men’s Singles Final)

To Tvanisevic’s | Ivanesivec’sba Total
From forehand ckhand
Forehand 16 -0 27 -11 43 -11
Court
Backhand 7-1 26-13 33-14
Court
Total 23-1 53 -24 76 — 25

From Table 5 it can be seen that Ivanisevic had equal success serving to Sampras’
forehand (59% success) or backhand (60% success). However, there were significant
differences in combinations of serves where he did poorly when serving to Sampras’
forehand from the forehand court and Sampras” backhand from the backhand court
in winning only 25/53 (47%) of points. This contrasted sharply to when he reversed
the direction and served to Sampras’ backhand from the forehand court where he
won 38/52 (73%) of points.

Second serves were also a major factor in the match with Ivanisevic winning only
19/40 (48%) while Sampras won 31/51 (61%). Curiously, Ivanisevic made only two
attempts to serve to Sampras’ forehand when making a second serve from the
backhand court (both times early in the second set) and in doing so won one and lost
one. The remaining 17 such serves he directed at Sampras’ backhand for a poor
success rate of only 29%.



Using Computers and Scientific Method to determine Optimal Strategies in Tennis 7

Table 5

Service points won-lost by Ivanisevic
(1994 Wimbledon Men'’s Singles Final)

To Sampras’ Sampras’ Total
From forehand backhand
Forehand 8-8 27 -9 35-17
Court
Backhand 11-5 17-20 28 -25
court
Total 19-13 44 - 29 63 —42

3. PROBABILITY OF SUCCESS

As well as considering the merits of various service strategies, there has been much
research over the years on the theoretical probability of winning tennis matches,
although much of this has not related to actual match data. Apart from the papers by
Carter and Crews [7] and Hsi and Burych [2] in which they both formulated games of
tennis as mathematical model where the probability of winning a point is constant
for each player, Fischer [10] presented a sophisticated analysis in which he gave
probabilities of winning both a set (both tie-break and advantage) and a match in
terms of the probability of winning an individual game. Once again the
independence of points is assumed, and the author uses an ‘average’ probability of a
player winning an individual point, irrespective of serving or receiving. Since these
probabilities are almost certainly different in practice, the results are of limited value.

1. While most papers developed probabilities for success from the commencement
of a match, Croucher [11] considered these probabilities from various starting
points. That is, he calculated the probabilities that a server would win a game
from each of the sixteen possible scorelines. Table 6 presents these values given
the probability p of winning an individual point on serve ranging between 0.30
and 0.80. (These probabilities should be sufficient for most players —in a study of
professional tennis players (Pollard [13]), it was found that the winners of
matches were found to have an average probability of 0.71 while the losers
averaged 0.62.)

According to Table 6, the probability of the server winning from:
e 0-30 is always greater than from 15-40
e 40-15 is always greater than from 30-0
e 15-30 is always greater than from 30-40
e 40-30 is always greater than from 30-15
e 30-30 (or deuce) is greater than from 15-15 if p < 0.50, or less than if p > 0.50.
e 30-15is greater than from 15-0 if p > 0.63 and less than if p < 0.63
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Table 6

The probability of a server winning a game from various scorelines

Probability p of the server winning a point

Current 30 .35 40 45 .50 ho .60 .65 .70 75 .80
score 7 y
0-0 099 170 264 377 500 .623 736 .830 901 949 978
15-0 211 311 424 542 656 758 842 905 949 976 .990
30-0 412 523 631 742 813 879 927 960 980 .991 .997
40-0 710 787 850 900 938 963 980 990 996 .998  .999
0-15 051 .095 .158 242 344 458 576 689 .789 .870 .930
15-15 125 296 286 389 500 611 714 804 .875 928 964
30-15 284 381 485 589 688 775 847 903 944 970 .986
40-15 586 672 751 819 875 919 951 972 986 .994 .998
0-30 .020 .040 .073 .121 .188 271 369 477 588 .696 .795
15-30 056 .097 153 225 313 411 515 619 716 .802 .873
30-30 155 225 308 401 500 599 692 775 844 900 941
40-30 409 496 585 671 750 .820 .877 921 953 975 .988
0-40 .004 .009 .020 .037 .063 .100 .150 .213 .290 .380  .481
15-40 013 .028 .049 .081 .125 .181 249 328 414 506 .602
30-40 047 079 123 .180 250 .329 415 504 592 675 .753
40-40 155 225 308 401 500 599 692 775 844 900 .941

Proper analysis of the mathematical theory of tennis would not be complete without
a discussion of the importance of each point in a tennis match. A popular definition
of importance 1, (Morris [12]), is based on the following difference between two
conditional probabilities.

I(point) = P(Server wins game | server wins point) — P(Server wins game | server loses point) (2)

Croucher [11] gives a complete list of the importance of each point for values of p
ranging between 0.30 and 0.80. Since the receiver’s probabilities are the complement
of those of the server, every point is equally important to both players. A summary
of the relative importance of points is shown below.

e The first point (0-0) is always of only average importance. That is, it never ranks
highly or near the bottom for any value of p.

e The point 30-40 has top ranking for p > 0.50 but has decreasing importance as p
falls below 0.50.

e The point 40-30 has top ranking for p < 0.50 but has decreasing importance as p
rises above 0.50.

¢ No point has a consistently high (or low) ranking for all values of p. However, the
points 30-30 and deuce never rank below 6™ out of 16.

e For p 2 0.50, those points where the server is trailing rank highly, while for p <
0.50 those points where the server is ahead rank highly.

e The point 30-40 always ranks higher than the point 15-30.

Define I = the importance of a point when the server has score s and the receiver
score ¥
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P_ = the probability that the server will win the game when the score is s to r

In this context we use the values of s and r to be 0, 1, 2, 3, 4 where they represent the
scores of 0, 15, 30, 40 and game, respectively. For the score of 15 — 30 we have:

IIZ = Pzz - P13 (3)
And for the score 30 — 40 we have:
Iza = P33 - P24 (4)

Since P,, = 0 as the server has lost, it follows from (4) that I, = P,,. Also, since a game
must be won by a margin of two points or more, P,, = P,, = L. Substituting into (3)
yields:

L,=1,-P, %)
Since P, > 0, it follows from (5) that I, > I, or that the point 30 — 40 is always more
important than the point 15 - 30.

12

Using the more complex notion of ‘time-importance” in which the importance of a
point is weighted by the expected number of times the point is played, Morris
develops several interesting conclusions. Firstly, he claims that, even though more
points are served into the forehand court than into the backhand court, the same total
time-importance is associated with both sides of the court. It follows that the higher
average time importance is experienced in the backhand court and suggests the
reason why doubles teams are advised to have the more experienced or stronger
player on the left side. (This ignores whether the players might be a left-hand and
right-hand combination which would presumably be another factor.)

Secondly, Morris claims that the total time-importance associated with even-
numbered and odd-numbered service games are equal. Since there are more odd-
numbered service games, the player who serves first generally will serve under less
pressure. There is some logic in this statement, since professionals are always
expected to win their own service. Winning the toss, a nervous starter may elect to
receive, since there may be a high probability that service will be broken in the first
game but, having settled down, a lower probability by the second when it will be
his/her turn to serve first.

The winner of a ‘classical’ or ‘advantage’ set must get two games ahead once the
game score reaches 6-6. This method often produces very long matches. The tennis
tie-breaker, introduced to shorten the length of matches, has had its desired impact
and its effect has been extensively examined in the research literature (Croucher [13]
and Pollard [3]). The tie-breaker is played when the game score reaches 6-6 in a set.
Some of the more interesting results from these papers surrounding tie-break sets
are:

1. For two unequal players, the probability that the better player wins the set is
greater for the classical version.

2. The expected value and variance of the duration of a match (in points played) are
always smaller for the tie-break version.
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3. If both players have a probability p of winning service points between 0.50 and
0.60, then the classical and tie-break sets have similar characteristics and so the tie-
breaker rule ineffective. While this case applies for most women’s matches where
p does lie in this range. For most men, especially on grass surfaces, the value of p is
almost always greater than 0.60.

4. DATA RECORDING

The field of notational analysis in all sports is one of growing importance as players
and coaches try to gain a competitive edge. The idea is to find an effective way in
which to accurately record appropriate information from a match in a way that is
going to be of real benefit. In some circumstances immediate feedback may be
required, (e.g., recording data on your next opponent), while on other occasions, it
may not be necessary to analyse the data on the spot, (e.g., collecting information for
a database).

A number of aspects of tennis require examination and proper analysis that can only
be achieved through the collection of appropriate data. Details can be recorded that
clearly show patterns of play along with the movement of players throughout the
points. Of particular interest is the identification of the strengths and weaknesses of
the players and the types of situations that bring these to the fore. Once these are
known, a coach can recommend appropriate action to employ actions and tactics that
will maximise the expected advantage to the player.

Recording information from tennis matches (or, indeed, any sport) can range from
the simple use of pencil and paper to the employment of video cameras linked to
computers. For many recreational tennis players, the former method may be quite
sufficient as a friend could record basic information including, for example, the types
of unforced errors made, serving statistics and data on particular strokes such as lobs
and passing shots.

The professional level requires more elaborate analysis, not only on the player’s own
game but on that of the opponent. A player would be most unwise to enter a match
with little or no information about the strengths or weaknesses of the opponent, who
almost certainly has those facts on the player's game. In some of the more
sophisticated techniques, data are recorded either directly into a computer or on data
sheets that are placed into a specially designed database written for this purpose.
These video/computer systems provide comprehensive sports analysis by
transferring a videotaped sequence to computer memory. Once transferred, the
sequence can be immediately retrieved and replayed for individualised coaching and
instruction.

The data entry person makes one complete pass through the match in which relevant
information or specific incidents are noted along with the time they occurred. Once
this has been done, a coach can then later type in, for example, ‘passing shots” and
the video recorder will intelligently go to those incidents in the match where passing
shots were in evidence.

One of the earliest and long-lasting techniques in the important area of data analysis
in tennis illustrates the idea behind the modern data analytic techniques of
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developing strategies. In 1982, a former South African amateur, Bill Jacobsen, began
to record his son’s tennis matches using hand-collected data that he fed into a
microcomputer. He soon designed a four-pound portable computer with which a
single observer could easily record ten times as much information. The system, now
known as CompuTennis, was subsequently awarded a contract by the US Tennis
Association to chart matches for all four national teams — Davis Cup, Wightman Cup,
Federation Cup and Davis Cup under 18.

CompuTennis does not attempt to cover every shot in a match since players can rally
for minutes at a time. Instead, the observer records only key strokes such as the serve,
return of serve and the sequence of shots (up to 5 or 6) that lead to the end of the
point.

The data can be fed into the computer by one of three ways:

1) At courtside while play is in progress,
2) from a video tape replay of the match,
3) by hand using CompuTennis hand charts.

Each key on the keyboard is programmed for a particular function to collect five
types of data:

The shot type

The stroke description

The direction of the shot

The result of the shot

The location of each player at the end of each point

AN b

The system has the capacity to record shot descriptions (e.g. half volley, passing
shot), whether the shot is forehand or backhand, the zones of the court travelled, and
the result (i.e. forcing shot, error). There are console keys on which to record ten
other statistics such as the number of times a player runs around his backhand.

Some of the fascinating statistics to be uncovered by CompuTennis are listed below.
(See CompuTennis [14].)

e In 99% of matches, the player who wins the most points in the match wins the
match.

e On 95.5% of occasions, the player who has the first match point will win the
match.

e In matches played on grass, more than 80% of the points are over within three
seconds.

¢ In the Wimbledon 1991 Men’s Final between the two big servers Boris Becker and
Michael Stich, the average length of a point was 2.6 seconds. This translated into
actual playing time per hour of only three minutes 42 seconds. Only 9 minutes of
the 2 hour 31 minute match was actually spent playing tennis.

e By contrast, the Monica Seles v Martina Navratilova U.S. Open final in 1991 saw
an average point length of 5.3 seconds with an average playing time of 9 minutes
41 seconds per hour. This long playing time did not suit the older Navratilova
who did not give herself enough time to recover between points.
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Comparisons of several key statistics for three Grand Slam championship matches in
1991 are shown in Table 7. The reader will be able to make other interesting
comparisons between not only male and female matches but between the type of
surface on which the match was played. In particular, note the significantly longer
playing time for each point on clay, along with the longer playing time per hour.

Table 7

Time of points for three Grand Slam championships in 1991

French Open (clay) US Open (Hard) Wimbledon (grass)
Men
No. of points 279 155 214
Avg. time per point 10.0 sec. 7.6 sec. 2.6 sec.
Actual play time 50 min 19 min. 9 min.
Avg. rest time 21.48 secs. 26.17 secs. 27.36 secs.
between points
Total rest time 2 hrs 30 min. 1 hr 39 min. 2 hrs 22 min

Play time per hour

14 min 56 secs.

9 min 58 secs.

3 min 42 secs

Women
No. of points 122 119 200
Avg. time per point 11.0 sec. 5.3 secs. 5.9 secs.
Actual play time 24 min 11 min. 20 min.
Avg. rest time 21.9 secs. 16.7 secs. 21.5 secs.
between points
Total rest time 1 hr 7 min. 56 mins. 1 hr 48 min

Play time per hour

15 min 43 secs.

9 min 41 secs.

9 min 18 secs.

Source: CompuTennis

Using data that were taken from a selection of professional tennis players in various
tournaments up to 1993, (Jacobsen [15]), the percentages of unforced errors are
higher on all surfaces for women than men. Clay courts produce the highest values
since the points are much longer producing more opportunity for a greater variety of
strokes and tactics. As a result, tactical and fatigue errors tend to be higher on this
surface. On the other hand, the tactical demands are less on grass; players are limited
to fewer possible successful strategies or stroke selections, because of the speed of the
court gives players little time to think during the points.

Many other aspects can be examined by match analysis, including whether players
should serve differently to the forehand or backhand court, the importance of the
ability to serve an ace or avoid double faults, the ability to return a clean winner off a
serve and a measure of how aggressive a player is. These properties of a player’s
game are among those considered by CompuTennis and illustrate the power of
proper data collection to effectively develop winning strategies. In fact,
CompuTennis has developed the concept of an ‘Aggressive Margin’ that attempts to
explain why a particular player has an edge in a crucial match and measures a
player’s improvement from match to match or against other players. (See Jacobsen

[16].)
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5. REMARKS

There is no doubt that the game of tennis, like many other sports, is undergoing
revolutionary change with regard to the amount of information that can be gathered
and analysed. While much research has centred on singles play, there is ample scope
for proper investigation of doubles play in which extra variables involving the
interaction between playing partners are clearly significant factors. One area for
further investigation would be to characterise optimal combinations of players to
maximise success in doubles and an examination of patterns of play. It would be
particularly instructive, for example, to analyse video coverage of the Australian
doubles combination of Mark Woodforde and Todd Woodbridge to discover what
factors are relevant in making them the most successful doubles combination of all
time.

Other areas for tennis research include the psychological profile of players,
comparison of different types of match preparation and training techniques and the
resultant effect of experiencing a perceived ‘bad’ line call. Different styles of play can
also be compared in order to find optimal strategies for a particular situation,
depending upon the opponent. Research by CompuTennis shows, for example, that
less than 30% of the winners of Post-War of the Men’s French Open (played on clay)
were ‘net rushers’ while the last female net rusher to win was Martina Navratilova in
1984. This leads to the question of what tactics are most effective for different
surfaces. There is even room for statistical analysis of the most effective way to rank
professional players and whether the current ATP (Association of Tennis
Professionals) method is the most reasonable. And if one wants to examine the
underlying principles of the tennis scoring system itself, the groundwork for this has
already been laid (Schutz [17] and Miles [18]). In particular, the latter claims that,
largely because in top men’s tennis the proportions of service points won by both
players is so high, the efficiency of the traditional scoring system is unduly low.
Indeed, he argues that the introduction of the tennis tie-breaker has further reduced
efficiency and he proposes a simple model to make the scoring more efficient.
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A REFINED AERODYNAMIC MODEL FOR LOW TRAJECTORY FLIGHT

LL. Collings’ and N.J. de Mestre’

Abstract

A refined aerodynamic model of a golf ball is proposed where the lift and drag
coefficients are based upon both velocity and spin rate which is also taken to be
time dependent. That is, spin rate decay is built into the aerodynamic equations.
The model is robust and permits the numerical calculation of low trajectory flight
characteristic projections for a range of lift, drag and spin rate parameters.

Key words: Aerodynamics, Golf ball

1. INTRODUCTION

The simplest model to describe the trajectory of a driven golf ball is to assume that it
lies in the vertical plane containing the initial velocity vector of the ball, and hence
the motion may be considered to be two-dimensional. This is only possible if the ball
spins about a horizontal axis perpendicular to the initial vertical plane of motion,
since the lift force due to the Magnus effect remains in this plane.

The differential equations of motion are then given by
mi =—Dcosy — Lsiny
my = Lcosy — Dsiny —mg (1.1)

where x = horizontal co-ordinate
y = vertical co-ordinate

D = drag force

L = lift force

m = ball mass

v = angle between velocity vector and x axis

g = acceleration due to gravity.

Hence at any time t,% =vcosy,y = vsiny where the speed v=+/x" + y* . Further, the
initial conditions (when t = 0) are

x=0,y=0,v=v,,y =y, (1.2)

School of Computing and Mathematics, Deakin University, Geelong Vic 3217
School of Information Technology, Bond University, Gold Coast Qld 4229
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Both Daish [1] and Bearman and Harvey [2] propose that the lift and drag forces be
modelled by

L= % pSV*C, (1.3)
and

D= % pSviC, (1.4)

where C, and C, denote the lift and drag coefficients respectively, p denotes the

density of air (1.226kg/m’ at sea level) and S(=0.00143m’) denotes the projected or
cross-sectional area of the ball.

The lift and drag coefficients can be shown by dimensional analysis to be functions of
the spin parameter and the Reynolds number. Thus they change as the linear and
rotational speeds of the ball change during flight. A number of experiments have
been carried out to determine their values at different linear and rotational speeds.

Maccoll [3] considered a spinning smooth sphere supported by a spindle. Davies [4]
spun a golf ball in a fixed position inside a wind tunnel until the desired spin rate
was attained. The ball was then released, and the drift of the ball was used to
calculate the lift coefficient. It has since been suggested that Davies” wind tunnel

speed of just under 31.5ms™ is too low to be representative of golf-ball drives.

Bearman and Harvey [2] utilised a 2-;- times scale model of a golf ball mounted on a

thin wire. A small motor inside the ball drove the ball’s rotation about the wire. The
experiments were conducted in a wind-tunnel capable of ten different linear speeds,
1

which simulated golf ball speeds from 14 to 88ms™ .

Davies ball-drop method was updated by Aoyama [5] using current video and
computer technology to automate the wind-tunnel experiments. Details of the
experimental values were not given, but diagrams indicated that the variation of C,

and C, with linear and rotational speed of the ball followed closely the results

produced by Bearman and Harvey’s graphs [2], with greater experimental accuracy
being claimed.

More recently, Smits and Smith [6] obtained lift and drag measurements taking spin
rate decay into account. They found similar results to Bearman and Harvey [2] for
the lift coefficient, although for the drag coefficient their results indicated a stronger
dependence on spin rate parameter over the entire spin rate regime than did
Bearman and Harvey [2]. Their data also identified a decrease in drag coefficient at
higher Reynolds numbers which had previously been unreported in the literature.
They clearly identify the importance of spin rate (and hence spin rate decay) on both
the lift and drag coefficients.
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2, A REFINED MATHEMATICAL MODEL

Davies [4] assumed the lift force to be proportional to v and the drag force to v*. That
is, he took C, to be proportional to v™'and C, to be a constant. Also, McPhee and
Andrews [7] and MacDonald and Hanzely [8] have made the same or similar
assumptions about C, and C,, for analytical convenience.

As outlined in the introduction, Bearman and Harvey [2], Aoyama [5] and Smits and
Smith [6] have all demonstrated the dependence of C, and C, on both the
instantaneous velocity v and spin rate @. Bearman and Harvey [2] integrated the
momentum equations (1.1) using a numerical step by step process that introduced
the appropriate C, and C, values from their wind-tunnel data at each step of the

computation. One of the difficulties with this approach is that spin rate is not
included in the formulation and an assumption is made about its initial value and
how it changes during flight until impact.

04 1.6
4

Smits and Smith [6] propose L=k and D=k,v’ +k,av (plus a sinusoidal
nonlinear curve fit term). This paper assumes L =k,0"v"* and D =k,0*v* where
the k;,7, and «, are determined from the Bearman and Harvey [2] data by least
squares analysis for a wide range of w and v. In addition, following Bearman and
Harvey [2] we take the spin rate decay to be proportional to @”r*/v? (where r = ball
radius) and so

a)O

0=—-" (2.1)
1+ R w,t

where ®, is the initial spin rate and R, is determined from the data of Smits and
Smith [6]. Spin rate decay is therefore built into the momentum equations.

Making the usual low trajectory approximation | yl << x and applying the initial

condition for x implied in (1.2), the horizontal momentum equation may be

integrated once to obtain
1

o, —1)k Cl)al_l —a —a, 1-a,
= {( 1121R1 (3_20:) [(1+R,a)0t)' : —1]+ (v, cosy, ) } , (2.2)

with x(0)=0.
The vertical momentum equation is

oy 4
—k _ % x%1 y k _ @ x
1+ Ryt L\t Ry

m m

-g, (2.3)
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Equations (2.2) and (2.3) are trivially coupled and may be easily integrated
numerically using a symbolic manipulation package.

The constants are:
k, =9.387x107,y, = 0.6427,7, =1.388
k, =2.264x107*,a, =0.1587,0, =1.693
m=0.0459,g =9.81,R, =210
where a 30% spin rate decay over a 6.5 sec. flight is taken.
The parameters are:
®, , the initial spin rate (rpm)

v, the initial velocity (ms™)

v, , the initial angle (radians).

3. RESULTS

Equations (2.2) and (2.3) were solved using the Maple package for a range of initial
spin rates, velocities and angles, with some results presented in the figures below.

The effect of initial velocity on distance is very close to linear for initial velocities in

excess of 40ms™ (Fig 3.1), whereas the effect of initial velocity on both the horizontal
component of landing velocity and maximum height is non-linear (Figs. 3.2, 3.3).
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Figure 3.1: Plot of distance against initial velocity with @, = 3500,y =10
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Figure 3.2: Plot of horizontal landing velocity against initial velocity with
@, =3500,y, =10°

w
[

Mazimum height [m)
Eoe b N w
s & s & 8

w

o

w
o

40 50 60 70 80
VO (m/sec)

Figure 3.3: Plot of maximum height against initial velocity with w, =3500,y, =10°

As expected, with v, and w, fixed, an increase in y, leads to an increase in carry,
with of course a reduced horizontal velocity on impact. (Fig. 3.4). Finally, the effect of
an increase in w, with v, and y, fixed leads to an increase in maximum height and
also an increase in distance of carry. (Fig. 3.5).
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Figure 3.4: Trajectories for y, =10° and y, =15° with v, = 70,0, = 3500
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Figure 3.5: Trajectories for @, = 2500 and w, = 3500 with v, =70,y, =10°

4. CONCLUSION

A model for low trajectory golf ball flight is proposed which incorporates spin rate
decay in the momentum equations. The model permits a rapid calculation of the
effects of initial velocity, angle and spin rate on low trajectory flight. It is robust, and
changes in golf ball design leading to different lift and drag coefficients can easily be
incorporated into the model and the flight characteristics determined. The model
performs very well in matching the “real world” trajectory data as presented by
Bearman and Harvey [2].
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THE EFFECT OF OAR FLEXNG ON ROWING PERFORMANCE

Maurice N. Brearley! and Neville J. de Mestre?

Abstract

Modern oars are made of fibre-glass, and bend to a significant extent under the
loads occurring in normal use. This paper analyses the effect of such flexing on the
performance of a coxless pair in a race over 2000 metres, but the conclusions
reached are typical of all classes of racing shells. Some oar manufacturers offer oars
classed as stiff, medium or soft, depending on their degree of flexibility. A
quantitative comparison is made of the performances achievable with stiff,
medium and soft oars, and (hypothetical) rigid oars. It is found that performance
improves as the stiffness of the oars increases.

1. INTRODUCTION

During the power stroke the loads on the oars of a racing shell are great enough to
cause them to flex to some degree. The object of this investigation is to determine the
amount of oar flexing, and its effect on the performance of a typical boat. A
quantitative judgement is possible because of information available from an
Australian Institute of Sport telemetry system for measuring oarlock forces.

Results will be obtained for one particular oarsman in a coxless pair, on the
assumption that the oar involved is of a given stiffness. Similar analyses could be
conducted for other rowers tested by the AIS, and for other types of boats, but would
not be expected to yield results substantially different from those obtained here.

2. THE FORCES ACTING ON A RIGID (NON-FLEXING) OAR

Figure 1 shows the important forces acting on a rigid oar during the power stroke,
and some of the notation to be used. The concept of a rigid oar is theoretical, since no
real material is completely rigid.

85 Dandarriga Drive, Clifton Springs Vic 3222
2 School of Information Technology, Bond University, Gold Coast Qld 4229
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Figure 1: Plan view of the forces acting on a rigid oar during the power stroke
The notation shown includes the following:
P = force exerted by the rower (taken to act between hands),

Q, Q! = components perpendicular to and parallel to the oar of the force exerted
at the swivel,

R, = force exerted by the water (taken to be at blade centre),
6 = angle between oar and the “square off” position.

The force R, is assumed to be perpendicular to the blade, the lateral frictional force of

the water being neglected. The suffix r on R is used to indicate that this force is for a
rigid oar.

A modern oar is light enough for its mass to be neglected entirely. As a result, taking
moments about the point A of the forces on the oar gives

R,(£+h)-Qh=0
that is, R, =h(¢+h)™7Q=0.3003Q (1)

on using the typical valuesh =1.00 m, £ =2.33 m.

3. THE MECHANICS OF OAR FLEXING

The forces on the oar cause it to bend, thus changing the angles which the blade and
the force R, make with the direction of motion of the boat. To determine the amount

of this change, information provided by a manufacturer of oars can be used.

Oars are usually divided into three classes, depending on their flexibility. They are
called stiff, medium or soft oars depending on the degree to which they bend under
an applied load. Figure 2 shows the arrangement which one manufacturer [1] uses to
check the flexibility of an oar.
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Figure 2: Deflection test of oar flexibility.

Let d = the end deflection of the oar caused by a weight W of 10 kg wt (=98N) at the
neck.

Consideration will at first be restricted to the case of a medium oar, for which [1]
d =3.85+0.25 cm = 0.0385 m

The theory of beam deflection [2] may be applied, taking the situation in Figure 2 to
be that of a cantilevered beam of length L = 2.05 m under an end load
W =98 N. The relevant formula for the end deflection is

d = WL3/(3EI), (2)
where E = the modulus of elasticity of the oar material,
I = the moment of inertia of the oar cross-section.

The formula (2) assumes that I is constant along the oar shaft, which is not actually
the case since the shaft tapers towards the blade. If taper is taken into account it is
found that calculated values of blade deflection angle are increased by only about
10% above those calculated using (2). This difference can be shown to affect the final
conclusions of this paper by less than 1%, so that shaft taper may reasonably be
neglected. The fact that the deflection d in Figure 2 is not measured just where W is

applied will not cause significant error because the blade length is small compared
with L.

On substituting into (2) the values mentioned above for d, L and W it becomes

0.0385 = 98 x (2.05)° /(3EI),
that is, EI = 7310Nm’ 3)

In the theory of beam deflection, the quantity EI is called the flexural rigidity of the
beam.
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Now consider how the shape of an oar changes when flexing occurs under the loads
experienced during the power stroke. This situation is depicted in Figure 3.

Figure 3: Plan view of oar bending during the power stroke

Let ¢ = change in angle at blade centre due to load.

The force R of the water on the blade then has the direction shown in the figure. The
value of Q may reasonably be assumed to be the same as for a rigid oar, and this is
the appropriate assumption for a comparison between the performances of rigid and
flexible oars. Because the degree of flexing is small, the value of £ is virtually the
same as for a rigid oar.

The oar is very stiff in the region AB because of its greater diameter there and
because of the wooden handle which is inserted for some distance into the hollow
fibre-glass shaft. This causes the oar to behave virtually as if cantilevered outboard of
the point B.

Goodman [2] gives the slope at the free end of a cantilevered beam (in the notation of
Figure 3) as

tan ¢ = (R cos ¢)¢* /(2EI).

For the present, attention will be restricted to the case of a medium oar. On using (3)
and the typical value £ =2.33m, the last equation gives

tan ¢, =3.713x10°R_ cosd_., (4)

where the suffix m is used on ¢ and R to indicate that these quantities are for a
medium oar.

From Figure 3 it can be seen that taking moments about the point A gives (on using
R, for Rand ¢_ for ¢)

(Rpcos ¢ )(¢ +h)-Qh=0.
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Hence, with the aid of (1)
R_cosod_ =h(¢/+h)"'Q=0.3003Q. (5)
When used in the right-hand side of (4), this yields

tan o, = 1.115x 10 Q.

The angle of flexing at the blade of a medium oar is therefore
O = tan (1.115 x 10 Q). (6)

When the oarlock force Q is known, (6) enables the value of ¢, to be calculated, after
which the accompanying value of the force R,, on the blade can be found by using (5)
in the form

R, =0.3003Q sec ¢, = R, sec . (7)

Equations (6) and (7) have been derived by according the blade of the oar the same
degree of flexibility as the shaft, an assumption which will not greatly affect the
accuracy of later conclusions because the blade length is small compared with /.

4. A PARTICULAR ILLUSTRATIVE EXAMPLE

The Australian Institute of Sport has conducted experiments [3] which measure the
oarlock forces Q shown in Figure 3 for various oarsmen using oars of medium
flexibility in different classes of shells under race conditions. The values of Q were
measured during the power stroke as functions of the time t and of the oar angle 6.
From these data the blade flexing angle ¢,, of a medium oar and the force R, on its
blade can be determined from equations (6) and (7), and the corresponding blade
force R, for a rigid oar from equation (1).

The process will be illustrated for the case of one particular oarsman in a coxless pair.
The graphs of Q versus t and Q versus 6 are shown in the Appendix. The values of Q
att=0,0.1, 02, ..., 0.9 seconds were scaled off the second graph and transferred to
the first graph to reveal the corresponding values of 6 at each of these times. The data
obtained are shown in the first three columns of Table 1. By convention, 0 is taken as
negative at the start of the power stroke.

The results of all these calculations are shown in Table 1 for each value of t. The
values of ¢, are taken as negative to conform with the sign convention used for 6.



26

Maurice N. Brearley and Neville J. de Mestre

Table 1

Data for one particular oarsman using a medium oar at

racing speed in a coxless pair

t Q 0 R, Om Rn, 0+, F, F,.
(sec) (N) (deg) (N) (deg) (N) (deg) (N) (N)
0 72 -58.8 21.6 -0.5 21.6 -59.3 11.2 11.0
0.1 375 -52.6 112.6 2.4 112.7 -55.0 68.4 64.6
0.2 810 —43.9 243.2 -5.2 244.2 —49.1 175.3 159.9
0.3 930 -34.0 279.3 -5.9 280.8 -39.9 231.5 215.1
0.4 1106 -23.3 332.1 -7.0 334.6 -30.3 305.0 288.7
0.5 1050 -10.2 315.3 -6.7 317.5 -16.9 310.3 303.8
0.6 897 4.5 269.4 -5.7 270.7 -1.2 268.5 270.7
0.7 623 17.3 187.1 —4.0 187.5 13.3 178.6 182.5
0.8 143 27.3 42.9 —0.9 42.9 26.4 38.2 38.5
0.9 0 34.2 0 0 0 34.2 0 0

From Table 1 it can be seen that, as expected, the values of R, and ¢,, follow those of
the oarlock force Q; the magnitudes of all three variables peak at the same time
t = 0.4 s after the start of the power stroke. The last two columns of the Table will be
explained in the next Section.

5. THE EFFECT OF OAR FLEXING ON RACE PERFORMANCE

From Figure 1 it can be seen that the forward component F, of the force provided by
one rigid oar is
F,=R,cos 0 (8)

The suffix r on F is used to indicate that this forward force is for a rigid oar.

Similarly Figure 3 shows that the forward component F,, of the force provided by a
medium flexible oar is
Fr =Ry cos (0 + 0y) )

The values of F, and F,, in the case of the particular oarsman discussed in Section 4
are shown at each value of t in Table 1. These may be averaged over a complete
stroke in the following way.

The experiment described in Section 4 was conducted at a pace of 28 strokes per
minute, which corresponds to a duration of about 2.1 seconds for a complete stroke.
The mean values F, and F, of F, and F,, over a complete stroke are therefore given

by
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2.1 2.1
E =(y21)[Fa, E, =(1/21)[E.at (10a, b)
0 0

The integrals here were evaluated numerically, using the values listed in Table 1 for
0 <t £ 0.9 together with zero values for F, and F,, during the period 0.9 <t < 2.1
occupied by the recovery phase. For this purpose, Simpson’s 1/3 Rule was used in
0 <t<0.8, together with the trapezoidal rule over 0.8 <t <0.9. It was found that

F,=75.55N, F, =73.17N

To save repeating all of the calculations for the second oarsman in the pair, it was
assumed that the mean forward components of the force on the whole boat during a
complete stroke could be found by doubling those found for the first oarsman. This
gives, for the whole boat, for rigid and medium oars respectively,

2F, =151.IN, 2F_ =146.3N (11a,b)

As expected, the forward force component is greater for the rigid oar than for the
medium flexible oar. To determine how this difference would affect the performance
of the boat over a 2000 m race the following approximate method may be used.

At the speeds attained in the “steady state”, the resistance D of the water is
approximately proportional to the square of the boat speed, for all classes of racing
shells; that is,

D e v
Hence in the “steady state” situation, the mean drag over a complete stroke is
D=k’ (12)
the constant k taking account of any small difference between v2 and ¥°.

In the “steady state”, each mean forward force in (11a,b) is balanced by the drag D in
(12), so that

kv’ =1511, kv2 =146.3 (13a,b)

where v, and Vv_ are the mean boat speeds with rigid and medium flexible oars
respectively. Hence
v./v, =1016 (14)

There is therefore an increase in mean boat speed of 1.6% if rigid oars are used
instead of medium oars. If this change applied over the whole of a 2000 m race, the
improved boat position would be

2000 x 0.016 =32 m,

or about 3 boat lengths for a pair. The improvement has not been shown to apply
during the acceleration period near the start of a race, but it is reasonable to suppose
that it would be comparable with that calculated for the “steady state” part of the
race.
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It is clear that the use of rigid oars would result in significantly better race times than
are obtainable by flexible oars, in all classes of shells. Completely rigid oars cannot, of
course, be made, but it is likely that more rigid oars than are now available will
eventually be produced.

It would also be of interest to calculate how much superior to medium and soft oars
are the stiff oars already available, and this will be done in the following Section.

6. COMPARISON OF STIFF, MEDIUM AND SOFT OARS

For a stiff oar the deflection d in Figure 2 has the value 3.25 + 0.25 cm = 0.0325 m [1].
In place of equation (3) for medium oars it is found that, for stiff oars,

EI = 8659 Nm?.

The force of the water on the blade, and the angle of flexing at the blade will be
denoted by R and ¢s respectively, the suffix s being used to indicate a stiff oar. By

the same argument as in Section 3, it is found that the analogues for stiff oars of
equations (6) and (7) are

¢, = tan"'(9.414x 107 Q), (15)
R, =0.3003Qsecd, =R, seco.. (16)

These equations enable the values of ¢; and Rs to be found for the times listed in
Table 1. By the same method as described in Section 5, the mean forward component
F; of the force R for a stiff oar can then be found from the equation analogous to (9),
namely

F =R, cos(6+0,). (17)

The mean value of F; over a complete stroke is given by the equation analogous to
(10b), namely

2.1
F, =(1/21)[ F, a. (18)
0
The integral may be evaluated numerically as described in Section 5; it is found that,
when doubled to give the forward force for a pair of oarsmen,
2F, =147.1N.

To compare the performances of medium and stiff oars the process described in
Section 5 may be used. In the “steady state”, the relevant equations are

kvl =146.3, kv’ =147.1 (13b,c)
where V_ is the mean boat speed with stiff oars. Hence

V]V, =1.00273. (19)
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The increase in mean boat speed if stiff oars are used instead of medium oars is
0.27%. Over a race of 2000 m this would improve the position of the boat by a
distance of

2000 x 0.0027m = 5.4m,
or about half a boat length for a pair.

A similar analysis may be conducted for soft oars, for which the deflection depicted
in Figure 2 is d = 4.45 + 0.25 cm. It is found that, in place of (3),

El = 6324 Nm?.

Using the suffix 0 to denote soft oar quantities, it is found that , in place of (6) and (7),
one obtains

0, = tan"*(1289x 10 Q),
R, =0.3003Qsecd, =R, sec,.

These equations enable the soft oar equivalent of Table 1 to be produced, including a
column showing the forward force component given by

F, =R, cos(e + ¢O) .
The mean value of F, over a complete stroke is found by numerical integration to be
F,=7284N, with 2F, =1457N
The “steady state” equation governing the mean boat speed v, with soft oars is
kv =1457 (13d)

Then (13c) and (13d) yield
v, /v, =1.00479,

which shows that the performance of a pair over 2000 m would be improved by
about 9.6 m (or about one boat length) if stiff oars were used instead of soft oars.

7. SUMMARY AND CONCLUSIONS

An analysis of the amount of oar flexing that occurs during the power stroke under
race conditions was made possible by applying beam deflection theory to an oar. The
effect of oar flexing on rowing efficiency was also determined. Precise results were
made possible by a knowledge of the oarlock forces occurring during the power
stroke. These forces were measured during experiments performed by the Australian
Institute of Sport under race conditions.

Attention was confined to the case of a particular coxless pair, but the conclusions
reached will certainly be typical of all classes of boats. The main conclusion is that the
stiffer an oar the greater its efficiency. For a pair in a race of length 2000 m it was
calculated that its final position would be improved by the following distances:
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4.1 m if medium oars used instead of soft oars;
5.4 m if stiff oars used instead of medium oars;
9.6 m if stiff oars used instead of soft oars.

If rigid oars existed they would improve the position of a pair over 2000 m by about
32 m (or 3 boat lengths) above that achievable by medium oars.

8. ACKNOWLEDGEMENTS

The authors are grateful to Mr David Yates for suggesting the topic of the influence
of oar flexing, and to Mr Stuart Wilson for drawing their attention to the data in
Reference 3. They also thank the Australian Institute of Sport for permission to use
the data from Reference 3 shown in the Appendix.

REFERENCES
[1] Advertising brochure, Concept II Oars Inc., Vermont, USA.

[2] J. Goodman: Mechanics applied to engineering, Vol I, (Longmans, Green & Co,
London, 1930)

[3] Australian Sports Commission: AIS Rowing Telemetry System (Internal Report,
1995)



The Effect of Oar Flexing on Rowing Performance 31

APPENDIX

Extract from AIS Rowing Telemetry System Report ([3]; reprinted with permission
of the AIS)

ROWTEL V2.8 AIS ROWING TELEMETRY SYSTEM - Force/Angle Graph

_HME—}Location: CANBERRA Date: 26/10/85
Start/end time (secs):254 364 #strokes: 48 26/10/95

------------------------------------------------

oooooooo

ooooooooooooooo

-30
ANGLE 3
'S5 (264109533.DA)

i (26108533.DA)

Measured oarlock force versus oar angle 6 for oarsmen rowing in a coxless pair at
28 strokes per minute. The results are summarised in Table 1, Section 5, for one

oarsman (*).
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APPENDIX (CONTINUED)

ROWTEL v2.8 AIS ROWING TELEMETRY SYSTEM — Force/Time Graph

[HME— Location: CANBERRA Date: 26/10/95 .
art/end time (secs):254 361 #strokes: 48

---------

FORCE (N)
[{n]

oooooooooooooooo

[#3]

Qp.2 0.0 0.2 0.4 0.8 1.0 1.2

. 0.6
Time (s} - .
'g5 '(25109533.01\]
i (26109533.DA)

Measured oarlock force versus time t for oarsmen rowing in a coxless pair at
28 strokes per minute. The results are summarised in Table 1, Section 5, for one
oarsman (*).
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A GEOMETRICAL ARGUMENT DEFINING AN ORDER RELATION
FOR ALL-ROUND PERFORMANCES IN CRICKET

Iain Skinner'

Abstract

A simple geometrical argument shows that the geometric mean of runs scored and
wickets taken is the appropriate number with which to measure the achievements
of cricketing all-rounders.

1. INTRODUCTION

Anyone who is involved with cricket knows that the compilation and comparison of
statistics and records is an integral part of the game. Indeed, for many it is intrinsic
to their enjoyment of the game. These numerical records, which purport to measure
the quality of performances, pose endless questions for debate and discussion.
Whereas, for example, the total runs scored or the batting average, as appropriate,
are usually trusted to measure the best batting performances in various contexts, on
some matters the popularly presented numbers are less than helpful, and require
slightly more mathematical analysis before providing reliable indications of the
relative merits of deeds. This paper addresses one such case by resolving the
shortcoming of current methods' inability to assess all-rounders. In doing so, it also
provides an instructive example of how mathematics can be used to clarify
confusion.

Generally cricketers specialize at either batting or bowling, but a very talented few
excell at both skills simultaneously. These are cricket's all-rounders. Contrasting
with that of bowlers and batsmen/batswomen, though, the traditional consideration
of all-rounders in cricket's records is, alas, cursory, confusing, inconsistent, and
somewhat arbitrary. I believe this to be due to the lack of an accepted objective
criterion for rating all-round performances, since people tend to be interested in
records to make comparisons. There is, therefore, a clear need for cricket's
statisticians to have a simple method to measure the records of all-rounders. If
considering batting, for example, one can total runs, see who scores the most, and an
order of merit naturally follows. Similarly, for bowlers there are natural orders:
number of wickets taken, bowling average, strike-rate, etc. But how can one rank all-
rounders and have a way of determining best-performed, because players both score
runs and take wickets? Which performance, of those depicted in Figure 1 (or Figure
2), is the best all-round achievement? How can one appropriately combine runs and
wickets into a single summary number that can then be ordered? Below, I show one

School of Electrical Engineering, The University of New South Wales, Sydney NSW 2052
(email: I.Skinner@UNSW.edu.au)
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way this can be done. A simple geometrical argument demonstrates that a suitable
definition for a single measure of all-round merit is the geometric mean of runs
scored r and wickets taken w. Arithmetic ordering then allows tabulation of orders of
merit. To verify its utility, this method is used to determine rankings with three
specific sets of data: test match series, Australian first-class seasons, and entire test
careers. First, though, to motivate the need for applying some mathematics, the
existing confusion in measuring the deeds and defining the achievements of
cricketing all-rounders is illustrated.

2. MOTIVATION

As a notational shorthand, define {r,w} to be the compound achievement of scoring r

runs and taking w wickets, e.g. {100,10} means the combination of 100 runs and 10
wickets.

2.1 The Confusion

To see the absence of a widely accepted standard defining all-round merit and some
of the confusion that ensues, let us compare several collections of records and note
which all-round doubles are recognized and the methods employed to order them.

| . ! . I . I . |
50 ° \ '\ \
\ \ \
o oo
b !
o | \ \
\ \ \
L T \
] \ \ =
40 . Lo A Y
® \\. \\ \
\
[ ° J. \ \
oee 0 000 |\ o\ \ e .
o @meo o ¢ o & \
c...-o -’ e \\
] \ L
30 .e .o. oo ‘\.o v \\ .
®@eee o @& o \ \
m®® e\ \ \
oem o 90 o\ N
®e o oo \ N \\
; by VRN oo N
..b\o o \\ \\.x
20 T « e N\ o ~ ° |
o v ee S
oea o % e ~<
\ e ® ~
\‘u o. %e \\\. \\\
(3 L4 N \\\\110
RN - oo ~o ~—_
~N_ e o o~ ~
[T D S~ |
10 N .o \\o\\ .o \\\\\ gg\
:0. e 70
. . o — —
3 . o
e o o o
X oo
)
0 - climnmes we w o =
T T T T T T
0 200 400 600 800 1000
r

Figure 1: Outstanding achievements by players in test match series. These 266 dots show the most
productive performances in terms of the combination of runs scored and wickets taken in a
single test series for all men's tests up to May 1997. The 9 crosses denote performances not
recognized as test series, though of equivalent standard and involving representative sides.
Along the bottom row, corresponding to specialist batsmen who took no wickets, many
dots merge together. The three hyperbolae (broken curves) correspond to all-round ratings

(i.e.,v'rw ) of 70,90, and 110. Specific details pertaining to performances rating at least 90
are given in Table 1.
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As a first example, consider performances in test match series. The best ones of these
are illustrated in the scatter diagram of Figure 1. As worthy of special recognition,
Frindall [1], Dawson and Wat [2] nominate{250,20} and list players chronologically;
Gibb [3] has a chronological listing for {200,20}; Frith [4] includes both {200,20} and
{300,15} (Why not also {220,19}, etc?) and lists alphabetically; Matthews [5] chooses
{300,20} and, most peculiarly, orders by the number of wickets taken; but the
definitive collection of cricketing records, namely the annual edition of Wisden
Cricketers” Almanack [6], contains no corresponding table, and any recognition of all-
rounders is completely absent from Dundas and Pollard [7]. Cricinfo [8] has two
chronological listings: those who, in the same series, simultaneously either took most
wickets and scored most runs or topped both the batting and bowling averages for
their teams.

As a second example, consider cumulative career totals from test matches. The
classic benchmark [1,2,3,6] is {1000,100}, associated with an alphabetic listing.
Nemeruck and Meher-Homji [9], however, chooses to list players by the number of
games required to attain that cumulative total. Frith [4] has two lists and two orders:
those with {500,50} are ordered alphabetically, whereas those combining a batting
average over 20 with 30 wickets are ordered by the ratio of batting to bowling
average. In Matthews [5] are those with {2000,150}, ordered . . . apparently
randomly!

In detailing the best all-round peformances from an English season, Matthews [5] this
time ranks by the ratio of averages, and Wisden [6] details four different
combinations: {3000,100}, {2000,200}, {2000,100}, and {1000,200}, all ordered
chronologically.

2.2 The Problems

In the absence of a way of measuring runs and wickets simultaneously, neutral
orders - chronological or alphabetical - are frequently favoured, but they do not
provide any basis for comparisons. Furthermore, even these neutral orders must be
accompanied by some nominated qualification (usually a minimum values of r and
w) to restrict consideration to “genuine” all-rounders, and so, themselves, are not
exempt from confusion and inconsistencies. Such minimum qualifications are, at
best, sanctioned by tradition, but always present a fundamental problem because the
precise choice reflects an individual assessment of what defines the all-rounder. For
example, the classic {1000,100} means Merv Hughes is worth recognising as a test-
match all-rounder, but Jack Gregory is not. Rankings that depend on an arbitrarily
defined qualification are unsatisfactory and this is the first and universal problem of
existing methods.

Ordering all-rounders by the number of games required to reach a specific, career
milestone is appropriate for such milestones, but, despite its use for such in
Nemeruck and Meher-Homyji [9], provides no meaningful basis for comparing non-
career (i.e., series, season or match) doubles. That Bruce Taylor performed the blue-
ribbon match double (a century and five wickets in an innings) in his first test does
not make it a better all-round performance than that of Ian Botham (his fifth) in his
sixty-fourth match.
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Likewise, the ratio of averages, i.e., (batting ave)/(bowling ave), and other orderings
based on summing functions of the averages [e.g., 10, 11] are flawed. They always
allow one outstanding average to distort rankings. In particular, if you examine
them, you will see that bowling averages are restricted to a much narrower band
than are batting averages, so such methods invariably favour “batting” all-rounders.
By almost any method based on averages, Michael Slater (one wicket) dominates all
Australian test match all-rounders. It is to stop such nonsensical outcomes that
minimum qualifications are specified.

In summary, we see that there are few widely recognized benchmarks for all-round
achievements and no universally accepted order relations for comparison of the
numerically defined achievements. Such orderings that exist are complemented by
arbitrarily chosen minimum qualifications which, thereby, make the methods even
more unsatisfactory.

3. MODELLING

Before beginning, note that detailed analysis was limited to men's cricket, since its
results are more readily available. There is no a priori reason why a similar argument
and result does not hold in women's cricket. Also, analysis is dominated by records
of test matches, which are more readily available than those of other first-class
games.

3.1  The Runs-Wickets Equivalence

In wishing to combine runs and wickets into a single summary statistic, it is
appealing to identify an equivalence between them. In this context, to see what an
individual player can achieve, it is instructive to use a scatter diagram for {r,w} in a
specified collection of games. Figure 1 shows outstanding examples of the scoring of
runs and taking of wickets in test cricket series. It is interesting to note the limit on
an individual's achievements. It seems that the best one can ever do is score about
r=1000 (Bradman's best was 974, though three times he exceeded 800) or w=50 (which
is half the absolute maximum available in a five test series), but not both. Getting
more of one is associated with less of the other. Understandably so; players tire
doing one and so cannot perform as effectively at the other. In Figure 2 are {r,w} for
all players in the 1994-95, 1995-96 and 1996-97 Australian first class cricket seasons.
Again there is a hint of an invisible line limiting the total productivity of any one

player.

Both Figures 1 and 2 are consistent with the lines given by constant = r+20w ,
representing contours defining approximately equal densities of points on the scatter
diagrams. Here, the constant indexes a specified level of achievement, with fewer
players attaining beyond the higher values, and all points along the line representing
an equivalent feat. Hence, from the scatter diagram, we may conclude that, as a first
approximation, scoring 20 runs is equivalent to taking 1 wicket. This factor of 20 is
consistent with, as examples, the recognized and tallied fundamental innings
achievements of scoring 100 runs or taking 5 wickets, with the widespread
acceptance [e.g. 1,2,3,4,7] of 25 wickets and 500 runs as the benchmarks for test series
performances by bowlers and batsmen, respectively, and with the ratio of the chosen,
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arbitrary qualifications for special recognition of run-making or wicket-taking during
test careers [6,12]. That it is not unambiguously endorsed is shown by the 1997
Wisden having other factors elsewhere in matched tables with runs or wickets as
qualifications (20 is used 5 times, but 25, 21, 17, and 13 also appear). I have only
found one instance of this equivalence being specifically identified as such in a
collection of cricket records, namely Miller [13], wherein the most prolific all-
rounders in Sheffield Shield cricket were identified using 120<(r+20w)/match.

Patterns similar to Figures 1 and 2 resulted from plotting the series returns of all
players who participated in various selections of post-War test match series. Further
evidence of the balance between runs and wickets, this time over an extended period,
was found by plotting, separately, the totals obtained by leading players over both
first-class and test match careers. In the latter case there was one significnt, noticable
difference: career batting totals tended to a higher maximum achievement. This is
probably evidence that batting skill lasts longer than the more physically demanding
bowling prowess. It is for this reason that the examples which are localised in
time(namely, season or series) give a better idea of what an individual can
accomplish as an all-rounder. All-round skill is about being able to perform with bat
and ball at the same time.
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Figure 2: Players' achievements in recent Australian seasons. These 496
points show the wickets taken and runs scored by players in
the 1994-95, 1995-96 and 1996-97 Australian first class seasons,
with separate entries for each player for each season.
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This apparent equivalence between 20 runs and 1 wicket means that equally
meritorious deeds can be identified: one point per run, twenty per wicket, and add,
as is done in Miller [13]. However, this equivalence between compound
performances does not define all-round deeds of equal value. It is important to
distinguish between these two ideas: scoring 600 runs (i.e., {600,0}) is assessed to be
as good as taking 30 wickets (i.e. {0,30}), but, though both are equivalent to {300,15},
neither is as good an all-round effort. Indeed, neither is an all-round achievement at
all. But {200,20} is; is it better than {300,15}? I think not. I claim that, of all equivalent
achievements, the best all-round deed is that with an equal number of points each
from batting and bowling, i.e. perfectly “balanced”.

3.2  Modelling All-Round Merit

Having identified the best all-round feats from a set of eqivalent compound deeds,
the next step is to compare between different levels of achievement.

To quantify all-rounders' performances, note the geometry illustrated in Figure 3.
Pure batting and bowling deeds define the ends of lines of equivalent performances,
i.e. points A and B, respectively. Let us assume there is an equivalence between M
runs and 1 wicket, so that the line joining A and B is defined by P = r+Mw with P
constant. (Above I suggested that M=20, but in this analysis it remains general.) It
follows that the equivalent, perfectly balanced all-round performance falls half-way
between these batting and bowling achievements, namely at point C, with =M w,
ie., {P/2, P2M}. To allow for variation away from this balance, it is appealing to
divide the line AB into three equal segments, each defining a sector of skill: batting,
all-round, and bowling. It is interesting to note that this sets the bowling boundary,
point D, as the ratio M/2 runs to 1 wicket, which, if M=20 as argued above, has the
value 10 which, in turn, is widely used to define benchmarks for all-round success
(e.g., {1000,100} in a specified collection of matches). As a bowler scores more runs,
his performance moves toward the boundary with all-rounders to become a player
described by critics as “a bowler who makes useful runs”. Likewise, there are those
who bat and double as “useful change bowlers”, and, with enough wickets, would be
recognized as all-rounders. The geometry has provided a quantitative measure of
qualitative terms.
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Figure 3: The geometry used to define all-round excellence. Here r
denotes runs and w wickets. The broken curve is the
hyperbola defined by w = P* / 4Mr.

One might argue that anywhere on the relevant line is an equivalent all-round
performance. However, those deeds at the ends (with either no wickets or no runs),
though equivalent achievements, have no all-round value at all. Similarly, those at
the mid-point of the line should rate higher as all-round performances than those off
to either side. In Figure 3, the feat indicated by D is equivalent to those at A, B and
C, but it is inferior to A and B, respectively, as a batting or bowling effort, and point
C, being the middle, should outrank it as an all-round deed. But what about an off-
centre point on a higher rating line? Return to the case examined above. What
happens in comparing {220,20} with {300,15}? It rates higher as an achievement, but
it is not clear whether it is a better all-round feat. Thus, this method of allocating
points to measure all-round value has two severe limitations:

* The equivalence that sets M=20, while supported by persuasive evidence,
is arbitrary. There is no intrinsic reason why it, or any other value for M,
is valid. If it is not, rankings are invalid.

* There is no obvious way to compare the all-round merit of two differently
rated compound achievements.
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To resolve this second problem, we need to supplement the scatter diagrams with
contours defining deeds of equivalent all-round skill. These curves need three
properties.

* They should approach infinity along either axis so that no wickets or no
runs means a zero rating as an all-round deed. This eliminates the need
for arbitrary qualifications.

They should be symmetric about the line ¥ = Mw. This ensures that runs
and wickets are treated equivalently, so that twice as many of one
compensates for only half as many of the other.

They should be tangential to the mid-point of the line r+Mw = constant.
This means that the balanced feats are rated highest.

Given these considerations, a suitable, simple model for the merit of all-round
performances is given by the hyperbolae defined by

rw=P"/4M (1)

which is constant. All points on one of them represent equivalent levels of all-round
achievement, with the precise level indexed by the constant. They show in Figure 3
that points D' and E', and not D and E, are all-round feats equivalent to C, preserving
the ratios M/2 and 2M, respectively. The constant, in turn, can be determined for any
particular combination of runs and wickets. That this model of all-round merit
satisfies the first two requirements is trivial. That it satisfies the third, and,
furthermore, does so for all values of M, requires a little algebra which I leave the
reader to confirm.

Since doubling both r and w means that the all-round achievement becomes twice as
meritorious, in using Equation (1), it follows that a rating of all-round performances
can be defined by

rating = constantrw . (2)

In other words, the geometric mean of wickets and runs is a simple, natural measure
for all-round merit. The constant in Equation (2) is arbitrary; the following three
examples show different ways it can be chosen usefully.

4. EXAMPLES

The validity of using the geometric mean to combine the measures of batting and
bowling skill into a single number which, in turn, measures all-round skill was
determined by considering the sensibility of rankings generated in three different
situations. There does not appear to be any systematic nonsense generated in any of
the examples.

Consideration of the aggregate return from test match series gives the order of merit
listed in Table 1. In this case, the constant was chosen to be 1. With the aid of the
hyperbolae, the respective positions can be identified in Figure 1. Table 1 should be
compared with those listing the most productive batting and bowling performances
in test series (Wisden [6], pp 151, 162 respectively).
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Table 1

Most prolific all-round performances in a test cricket series. The comparative merits
of these performances are shown in Figure 1. The ratingis vrw .

rating

127
126
120
116
111*
102
101
99
99
99
95
94
94
94

G.Giffen Aus v Eng
G.A.Faulkner SA v Eng
G.S.Sobers WIin Eng
LT.Botham Eng v Aus
G.S.Sobers RoW in Eng
A.W.Greig Eng in WI
J.M.Gregory  Ausv Eng
Imran Khan  Pak v Ind
R.Benaud Aus in SA
G.S.Sobers WIv Ind
G.S.Sobers WIin Aus
Kapil Dev Ind v Pak
W.J.Edrich Eng v SA
K.R.Miller Aus in WI

* not recognized as an official test series

1894-95
1909-10
1966
1981
1970
1974
1920-21
1982-83
1957-58
1962
1968-69
1979-80
1947
1955

M

5
5
5
6
5
5
5
6
5
5
5
6
5
5

runs  ave

475  52.77
545  60.56
722 103.14
399  36.27
588  73.50
430 47.78
442  73.67
247  61.75
329  54.88
424  70.66
497  49.70
278  30.88
552 110.40
439  73.16

wkts

34
29
20
34
21
24
23
40
30
23
18
32
16
20

ave

24.11
21.89
27.25
20.58
21.52
22.63
24.17
13.95
21.93
20.56
40.72
17.68
23.12
32.00

Similarly, an order was obtained for performances in an Australian season of first-
class cricket and is given in Table 2. This complements lists detailing the most runs
scored or wickets taken in an Australian season (Dundas and Pollard [7], pp 86, 112
respectively). This time the arbitrary constant was chosen as +/5/3, meaning that
{600,30} is rated as 1000 points. For comparison, the best bowling was C.T.B.Turner's
106 wickets and the most prolific batting Bradman's 1690 runs.

Table 2

Most prolific all-round performances in an Australian first-class season. The rating
is 7.45\Vrw .

rating

2159
2044
1804
1788
1736
1688
1496
1486
1475
1462
1435
1422
1420
1414
1405

G.Giffen (SAus/Aus) 1894-95

G.A Faulkner (SAfr) 1910-11
R.B.Simpson (WAus/Aus) 1960-61
G.S.Sobers (SAus) 1962-63
M.H.Mankad (Ind) 1947-48
G.S.Sobers (SAus) 1963-64
J.N.Crawford (MCC) 1907-08
F.R.Foster (MCC) 1911-12
L.C.Braund (MCC) 1907-08

K.R-Miller (Vic/Aus) 1946-47
A.J.Richardson (SAus) 1925-26
G.S.Sobers (WI) 1968-69
J.M.Gregory (NSW/Aus) 1920-21
K.R.Miller (NSW/Aus)  1950-51
M.ANoble (NSW/Aus) 1903-04

11
14
15

13
10
16
13
16
13
11
10
12
14
12

runs

902
1534
1541
1128

889
1006

610

641

783
1202

904
1011

844
1332

961

ave

50.11
59.00
64.21
80.57
38.65
62.87
26.52
35.61
35.59
75.13
50.22
67.40
60.28
78.35
56.52

wkts

93
49
38
51
61
51
66
62
50
32
41
36
43
27
37

ave

22.54
25.59
31.79
28.25
26.14
26.56
25.19
20.19
32.88
23.06
19.92
31.11
22.37
28.22
21.86
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A similar method to the above, through Equation (2), could be used to evaluate who
was the most prolific all-rounder in test cricket history. It is obvious, though, that
more matches would mean more runs and wickets, so that there is need for a
different quantity, one which fulfils the same role in comparison of all-rounders as
averages do when batting achievements are compared. As a first suggestion, we
could, of course, divide by the number of matches and the result would be a better
guide to ability. This was done to produce Table 3: rating = -constant

\J(r I match)(w [ match) , where the constant was chosen to make the top rating 100.

One could argue a need to increase the arbitrarily chosen qualification (i.e., the
minimum number of games which only excluded three players, all of whom were
bowlers), but even with this very weak condition, of those listed, only Godfrey
Lawrence is not afforded all-rounder status by Jenkins [14], and he is in fifteenth
position.

Table 3

Rankings of all-round performances for entire test careers (qualification: played at

least 3 matches). The rating is 6.48rw Imatches. For comparison, the final column
is batting ave | bowling ave.

rating M runs ave wkts ave ratio
100 H.Hordern (Aus) 1910-12 7 254 23.09 46 23.36 0.99
100 A.E.Trott (Aus/Eng) 1895-99 5 228 38.00 26 15.00 2.53
98 G.A.Faulkner (SA) 1906-24 25 1754 40.79 82 26.58 153
96 G.S.Sobers (WI) 1954-74 93 8032 57.78 235 34.43 1.68
90 ILT.Botham (Eng) 1977-92 102 5200 33.54 383 28.40 1.18
89 M.J.Procter (SA) 1967-70 7 226 25.11 41 15.02 1.67
88 T.L.Goddard (SA)  1955-70 41 2516 34.46 123 26.22 131
87 R.J.Hadlee (NZ) 1973-90 86 3124 27.16 431 22.29 1.22

86 Imran Khan (Pak) 1971-92 88 3807 37.69 362 22.81 1.65
86 M.H.Mankad (Ind) 1946-59 44 2109 31.47 162 32.33 0.97

86 G.J.Thompson (Eng) 1909-10 6 273 30.33 23 27.73 1.09
84 ].M.Gregory (Aus) 1920-28 24 1146 30.96 85 31.15 0.99
84 Amar Singh (Ind) 1932-36 7 292 22.46 28 30.64 0.73
83 K.R.Miller (Aus) 1946-56 55 2958 36.97 170 22.97 1.61
81 G.B.Lawrence (SA) 1961-62 5 141 17.62 28 18.28 0.96
80 A.W.Greig (Eng) 1972-77 58 3599 40.43 141 32.20 1.26

Note: In women's test cricket, B.(Betty) Wilson (Aus) earnt a rating of 143 with this system.

The method could be much improved. Rather than runs per match, the batting
average, which gives the expected score in some sort of notional innings, is widely
accepted as a reliable indication of batting ability. (For a discussion about
improvements, see Kimber and Hansford [15].) To replace wickets per match (an
artificially high value of which follows for those who do disproportionally more
bowling), a more suitable definition of effectiveness for bowlers, giving some
expected number of wickets in a notional performance, awaits development. A
further refinement would be evaluation of the geometric mean on a match-by-match
or season-by-season basis, and calculate a further mean from these values. This
would remove from consideration players who excelled with either ball or bat, in
turn, but not both simultaneously, but who, nevertheless, finished with the
cumulative figures of a genuine all-rounder. I leave such closer examination of the
careers of all-rounders to such others as compile the detailed cricketing records and
statistics that [ have used.
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5. CONCLUSION

Ultimately, the test of any application of a mathematical structure is whether it
enhances understanding of the subject to which it is applied. Here, the question is
whether the orders of merit generated are sensible ones. I believe they are. They
have generated no systematic criticism from others. There are no performances
recognized that are not noteworthy, and no players without pretence to all-round
ability are ranked highly. As with all cricketing records, though, there will be
endless debate about whether a mathematical method can ever generate records that
correctly recognize noteworthy performances. Concerning the sport's statistics, the
doyen of cricketing critics, Sir Neville Cardus [16] wrote, “We might as well add up
the quavers and crotchets in Rossini's operas.”

Like all modelling, that in cricket has shortcomings. The specific problem here is an
intrinsic property of the statistics and records: very rarely do they consider the
playing conditions, strength of opposition, amount of luck, etc. For example, runs
are relatively easier to score now than when first-class cricket was first played in
Australia. (Is this why tradition has recognized the ratio 10 as defining all-round
merit?) A similar problem exists with the natural order relations defined for batting
and bowling, but, nevertheless, ranking records are produced. The method
described herein allows the process to be extended to afford some recognition, albeit
imperfect, of all-round excellence.
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ONE DAY CRICKET SCORING PROGRAM

Sean Innes’ and Steve Sugden’

Abstract

This work has grown out of a final-semester project to create a cricket scoring
program to run on a Windows-based laptop computer. A major design goal of the
program was ease-of-use by a normal person who is a professional cricket scorer or
just an avid cricket lover. It appears that there are or no similar programs available.
The cricket scoring program has been designed for one day cricket matches and the
project was created using Borland's 32-bit Delphi 3 toolset. The application is
capable of running on any system running the Windows 95 or Windows NT
environment, with sufficient speed and RAM. The cricket scoring program will
allow users to enter information for a match, see batsman and bowler statistics,
general statistics, as well as line and column graphs.

1. INTRODUCTION

The basic aim of the project was to create a program which could be used to score a
cricket match at a live game; thus, the design goal of ability to run on a laptop, with
its relatively limited screen real estate, was constantly before us. From feedback from
program testers, it has been noted that trying to use this cricket scoring program
while watching a televised game is very difficult and sometimes impossible due to
the fact that the television networks don’t provide you with sufficient time to enter in
player information. They also do not provide adequate details on where the ball was
exactly hit on the field. This is because the camera work is sometimes focussed on the
batsman running between wickets and it is therefore impossible to click on the
appropriate field position.

As noted, the programming environment that was used in this project was Delphi 3
client/server. This language has very powerful components (Halogram [1]) and
abilities to easily calculate any mathematical expressions involved in the application.
Its graphing abilities also made drawing graphs very easy and less tedious than more
traditional programming environments. All that was needed for the graphs was the
appropriate information for each column or point, and after this information was
provided to Delphi the appropriate graphs were automatically created by Delphi
run-time system (Vivrette [2]).
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2. PROJECT OBJECTIVES

The program is designed for the cricket lover who would like to keep a personal
record of information and statistics for a limited-over (one day) cricket game. This
program can easily be taken to a cricket match and used on a laptop. The entire
program will be object-oriented and almost entirely ball-driven that is, after every ball
is bowled the user enters in the required information.

During the entire life cycle of this project the clean room approach was used. With this
the waterfall model (Schach [3]) for software development was used and the following
phases were completed during the product life-cycle. The phases include
Specifications, Planning, Design, Implementation and Testing. The documentation
also includes some of the test cases that were performed on the implemented code
along with the expected results and the actual results. During the life-cycle, it was
made sure that the product was robust, meaning that the program should not crash
under non-standard operating conditions, would perform at a reasonable speed
without taking up an excessive amount of resources, fulfils what the user wants, is
reliable and satisfies the output specifications independent of its use of computing
resources.

The information that is gathered from each ball in this application includes the
following:

e The bowler
e The striker batsman and non-striker batsman
e The number of runs scored by the striker
e The direction of the shot based on a cricket field map
e The wickets or retiring details resulting from this ball
e The extras situations:

> No ball - requires extra ball to be bowled

> Wide - requires extra ball to be bowled

> Leg Bye

> Bye
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5conng Program

Figure 1: Screen Shot of Main Interface

A number of special situations may arise. These occur, for example, when the
batsman may score runs from a no ball or wide or situations that require leg byes or
byes to be added.

An Undo feature is also provided so the user can easily go back a step when entering
in this information. This undo ability is multi-leveled and also allows users to
perform a re-do later and move back to the current position in the match. The
program also allows the user to easily save an entire match and later load this match
back into the program.

Many batting and bowling statistics are available in this application. Together these
statistics with the other general statistics make up the scorebook view that is very
common to the person who is familiar with scoring on paper.

The program also produces a few different types of graphs. The first is a column
graph showing the amount of shots hit to a particular direction for each cricket team.
The second is a column chart for each innings showing the number of runs scored
per over. Finally the third type of graph compares one team with the other in a line
graph showing the run rate for each side. This line moves slowly in an upward
direction as the number of overs increases.
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I 4

Figure 2: Fielding Positions Runs Scored Example

Number of RURS St

Figure 3: Line Graph Comparing Side A and Side B

3. FUTURE CONSIDERATIONS

We discuss a number of items on our wish list of further enhancements. These are, of
course, extra features or options that could be added to the product in another
version. Foremost among these are making new statistics and new graphs available.
It is expected that these will be easily done without any necessary modifications to
the ball-driven structure of the program. In this manner, a user from Version 1 will
be able to load a saved cricket match which was created in Version 1 yet still see the
new statistics and new graphs which are created in Version 2 of the product. Apart
from more statistics and more graphs the following options are high on the list for
future versions.
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3.1 Free Editing Option

This option was originally in the first specification document, but due to time
considerations and difficulty of the task this option was removed from Version 1 of
the product. It is still at present achievable through the use of the saved files. A
cricket match can be saved and the user may decide to open this created text file and
edit it with a simple text-editing program such as Windows Notepad or Wordpad.
With this simple tool, users may easily change the values of the computer fields for
each ball bowled. When the user later re-loads that cricket match, it will reflect the
changes which were made during the manual editing of the saved file. However,
saving a file and making manual modifications can be very time consuming and, due
to problems which can arise in the middle of a cricket match, it would be very
desirable to implement this in the next version.

3.2 Team Databases

Currently, with the commencement of a cricket match, the scorer must enter the
complete team names and information every time. With a database of teams, one
could simply have the team already defined in the database and when the team is
loaded, simply select the appropriate team. When modifications to teams are
required, these are simply saved to the database.

3.3 Rain-affected Cricket Matches

In future versions, we would like to implement the ability to still score and use the
program in a rain-affected cricket match. We believe that implementing this feature
for a rain-affected first innings is relatively straightforward, however implementing
it for the second innings would be very difficult. This would still not be a very good
option either at present as a complete overhaul of the rules for rain-affected cricket
matches is currently in progress. It might be some time before a final decision has
been made on how rain-affected matches are going to be played.

3.4 Web connectivity of players

Real-time updates of matches could be easily hooked into the Internet. This way
someone at the game can in the future use the program that has a direct link to the

Internet. Then ultimately the application can be used on any platform throughout the
World Wide Web.
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MATHEMATICAL MODELS THAT PREDICT PERFORMANCE DECLINE IN
ELITE VETERAN ATHLETES 30-90 YEARS IN THE SPRINT, DISTANCE AND
JUMP EVENTS

Ian Heazlewood' and Gavin Lackey'

Abstract

A number of researchers have measured strength, power, speed and aerobic power
to plot the course of, as well as, to explain the decline in motor performance. Some
previous research indicated these trends were linear and in other instances non-
linear. However, a number of important research questions can be addressed.
These are: Do the track and field events that are dependent upon the different
energy-liberating mechanisms display similar declines and do both males and
females follow a similar trend in the decline of motor performance with increasing
age (30-90 years)? Do the performance declines fit specific mathematical models
that reflect the aging process and which would allow accurate predictions of future
performance with increasing age for veteran athletes? The method consisted of
selecting state (NSW) and national (Australian) veteran championship
performances and world records as the data sets. It was hypothesised that the short
sprint (100m), high jump, long and triple jump events reflect the ATP-CP system;
the 200 and 400m the anaerobic-glycolytic system; and the longer distances such as
1500m, 5000m and 10000m the aerobic system. It was also hypothesised that if a
general aging process is expressed in the performances, then a similar
mathematical function should display this trend across all the selected events and
for both males and females. The mathematical function that best fitted the data
(highest R2, lowest p-value and smallest residuals) was selected for the explanatory
model. The results indicated for the majority of events and for both males and
females that the best fit were quadratic and cubic mathematical functions with R2
values ranging in the mid .8’s to mid .9’s. These findings suggest that declines in
motor performance are similar for the events and constructs studied. These
findings are in contrast to some of the previous research and suggest a common
aging process is expressed across all the events and energy systems.

“Time is seen as a prison that no one escapes; our bodies are biochemical machines
that, like all machines, must run down,” (Deepak Chopra [1]).

“Age can bring illness and dependency, a decline in the functioning of body and
mind, of memory and of mobility, but age can also signify inner riches, experience
that can be handed on and new creativity,” (Professor Roman Herzog, President,
Federal Republic of Germany [2]).

REVIEW OF LITERATURE

The effect of aging on human motor performance is currently a very popular
research topic and reflects the current explosion in participation in veteran sports
(Harridge [3]; Heazlewood [4]; [5]; Herzog [2]; Lexell [6]; Richter [7]; Suominen [8];
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Reaburn [9]; Reaburn, Logan and MacKinnon [10]). The research topics addressed
include changes in the enzyme and energy substrate level, anatomy, functional
anatomy, physiology, exercise physiology, biomechanics, competitive performance
and sports psychology. Currently, entire international conferences (Huber [11]) are
addressing and reporting research findings on healthy aging, activity and sports. A
recurring theme within this research domain is, what is the rate of age-related decline
beyond the third and fourth decade of life in the various biochemical function,
physiological systems and anatomical structures, and are these declines reflected in
gross motor performance or the total human organism motor responses?

Another important question is, do we evaluate the changes in a partistic manner, that
is biochemistry, anatomy, physiology, exercise physiological, biomechanical and
sports psychological constructs are researched in isolation and usually in a
laboratory setting, or do we attempt to utilise an integrated approach (a holistic
approach) to understand the changes in total motor behaviour of the human
organism? That is, behaviour that is usually expressed in the field or the sports-
competition setting? The partistic approach may or may not describe the decline in
competitive performances that are thought to reflect the declines in the different
factors, such as strength, power, speed and endurance.

The past research had addressed the declines in function from a partistic approach
and in some cases attempted to relate decline in a specific function to decline in a
competitive situation. The different factors that have been, and are identified to
change with increasing age will be addressed under appropriate subheadings and
will highlight the areas of research focus.

Aerobic Function

Reaburn ([9] and [12]) noted declines in maximal aerobic capacity, maximal heart rate
and increases in adiposity (adiposity effects relative aerobic power) in males and
females between 30 and 80 years. Linear models were fitted to each of these
constructs, however it is clear that these changes based on the scatterplots provided
by the author are non-linear in nature.

DeVries and Housh [13] plotted the loss of function of a number of physiological
constructs from ages 25 to 65 years and noted that there were both increases,
decreases and no changes in some of the constructs. In this review the researchers
made no effort the fit the changes, and in most instances the declines, to any specific
mathematical functions.

Specifically they noted:

e There were increases in body weight, heart volume, systolic blood pressure and
diastolic blood pressure.

e Essentially no changes in heart rate and oxygen pulse at a constant power load
(100W).

e There were declines in blood volume, total haemoglobin, vital capacity, forced
expired volume, maximum oxygen uptake, maximum heart rate, maximum
stroke volume, maximum cardiac output, maximum ventilation, maximum
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respiratory frequency, maximum diffusion capacity, maximum blood lactate
values and maximum strength.

Although the researchers did not fit specific mathematical functions to the data, the
declines in function that were plotted appeared not to conform to a consistent
function. The construct of strength has relevance to aerobic power as aerobic
activities require repetitive force production by the striated voluntary muscles to
complete the tasks of running, walking, swimming and cycling.

Astrand [14] examined the exercise physiology of the mature athlete and noted some
functional and performance changes. Specifically, marathon times for men and
women declined from age 35 to 80 plus years. Although Astrand [14] did not fit any
mathematical functions to quantify the declines, the scatterplot appeared to conform
to either quadratic or cubic functions.

Exercise physiological changes revealed declines in maximal oxygen uptake-from
years 55 to 70 for both males and females, significant reductions in muscle strength
and muscle mass beyond 50 years of age. The reductions in muscle strength and
muscle mass were attributed to the loss of motor neurones which resulted in muscle
fibre degeneration. Although the loss of muscle strength occurred after 55 years there
was no comment that this loss would translate to an accelerated decline in maximal
aerobic power although the scatterplot of marathon performance (Astrand [14]) may
actually reflect an accelerated and non-linear decline in maximal aerobic power past
50 years of age.

Thompson and Dorsey [15] examined the cardiac function of masters athletes and
they believed that the decreases in endurance athletic performance reflected
decreases in maximal aerobic power at a rate of approximately 1% per year past the
third decade of life. They cite the decline in marathon performance with increasing
age, 30 to 70 years, to support their argument. Although the declines in marathon
performance are presented as though they are linear, an examination of the graph
where increasing time of performance is plotted against increasing age, the line of
best fit appears to be either a quadratic or a cubic mathematical function and not a
linear fit.

Some of the decrease in maximal aerobic power was attributed to age-related
decreases in maximal heart rate, maximal cardiac stroke volume and in maximal
arterial-venous differences. Declines in maximal aerobic power in both trained and
untrained people are attributed to the factors mentioned previously (Thompson &
Dorsey [15]). Specifically, maximal heart rate decreases at a rate of 0.4 to 0.95 beats
per minute per year and accounts for between 30% to 50% of the decreases in VO,
max., decreases in maximal stroke volume were from 25% to 30% and declines in
maximal arterial-venous differences were from 25% to 30%. These findings were
based on average values from cross-sectional and longitudinal studies, and both
Thompson and Dorsey ([15], p. 310) admit that “individual variation in exercise
performance are generally greater than those produced by age alone.” They believe
that the declines are not reflective of mechanical efficiency (a biomechanical
construct).
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Saltin [16] examined the performance declines in physically-active endurance
athletes, specifically orienteers. Some of the analyses were based on cross-sectional
data and others on longitudinal data.

Saltin [16] discovered that:

e The decline in maximal oxygen uptake declined at approximately 0.73 ml kg’
min” per year or 0.9% from 20 to 70 years (30%) and a figure consistent with other
researchers.

e Cardiac output declines approximately 16%.

e Maximal heart rate declines approximately 11%.

e Stroke volume declines approximately 5%.

e Maximal oxygen pulse, a measure of stroke volume and arterial-venous oxygen
differences, declined from approximately 0.42 to 0.32 ml kg" min" beat’ from 26
to 66 years. The decline in arterial-venous oxygen difference (14%) is thought to
be more important than the change in stroke volume in the decline of maximal
oxygen pulse.

It is interesting to note that capillary density is similar in both young and older active
men and does not appear to explain the decline in maximal oxygen uptake. In terms
of actual performance declines of 35 to 40% have been observed in the sport of
orienteering from the ages 20 to 25 through to 65 to 70 years. Similar declines have
been observed in marathon running.

Saltin ([16], p.77) believes, “ Thus the decline in top performance in the older athletes
would seem to be age-related, something which cannot be overridden or
compensated for by training” and reflects the age-related declines in maximal heart
rate and increased stiffness (hardening of the arteries) of the arterial tree which are
expressed as reduced maximal aerobic power.

Hagerman, Fielding, Fiatarone, Gault, Kirkendall, Ragg and Evans [17] examined
high performance oarsmen over a 20 year period from 1972 to 1992 (1972 mean age =
23.8 years for the young adult males, 1992 mean age 44.2 years for the middle age
males).

The major changes were:

e Decreased peak blood lactate (106%).

e Decrease in peak power, ventilation and aerobic power were similar (40%).

e Decrease in relative aerobic power (corrected for lean body mass) and absolute
aerobic power (30%).

e Increases in body fat (12.3% to 15.6%).

e Significant but smaller changes in body weight, heart rate and oxygen pulse.

These findings by Hagerman et al. [17] indicated that the different constructs
measured changed in their own unique manner with increasing age and may be
reflected as different mathematical functions.

Drinkwater [18] examined an aging nexus in female athletes and indicated that the
slope of the decline in maximal aerobic power was approximately the same for
sedentary, active and highly-trained woman athletes, however the absolute values
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for these groups are differently. Changes in isometric strength displayed a moderate
decline up to age 50 years and then a rapid decline in strength after 50 years
onwards. These findings indicate that loss of function with age in some constructs
appears to be unique to that construct. This implies that different mathematical
functions that may fit the data should be unique to specific constructs such as aerobic
power, strength and range of motion.

Pulmonary Function

Makrides [19] when researching the effects of physical training in young and old
people also noted the declines in maximum oxygen uptake with increasing age past
the third decade. The declines were of the order of 0.5 to 1.0% per year which were
attributed to reductions in maximum heart rate, cardiac output, declines in breathing
capacity and pulmonary gas exchange function.

Hagberg, Yerg and Seals [20] examined the pulmonary function in young and older
athletes and untrained men of similar age, and normalising the data for age and
height, discovered declines in vital capacity, total lung capacity and forced expired
volume (one second test) when older (mean = 66 years) sedentary people were
compared to young (mean = 27 years) sedentary adults. No actual mathematical
function describing the decline was generated for the data. It was interesting to note
that age and height normalised data indicated that the masters’” athletes (mean = 65
years) actually displayed higher values than young athletes (mean = 24 years) for
vital capacity, total lung capacity and forced expired volume (one second test). The
findings for the masters” athletes indicated that exercise might actually increase lung
function in contrast to the majority physiological systems which display declines
with increasing age past the fourth decade of life.

Flexibility

Drinkwater [18] observed that the loss of flexibility was most rapid in those arthroses
(joints) that were least often used, whereas those arthroses most frequently used
displayed minimal decline in range of motion (ROM). These findings indicate that
the age-related declines in range of motion with increasing age might be more a
reflection of lifestyle and physical activity patterns more than a true aging effect.

Muscle Function

Green [21] addressed the changes in aging human skeletal muscle and observed the
following changes.

e Significant loss (25%) in muscle fibres from 30 to 72 years.

e No significant changes in muscle-fibre distribution.

e Type I fibres are relatively insensitive to age associated changes up 60-70 years,
however Type Il fibres may display more significant changes with age.

e The changes in capillarization are unclear and there might be sex differences
where males displayed decreases whereas females did not.

e Energy metabolic changes were thought to be reasonably invariant as many
enzymes, the aerobic substrate-end oxidation and anaerobic glycolysis did not
appear to deteriorate with age.
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o There appears to be a reduction in the volume fraction of mitochondria and mean
mitochondrial volume from 16 to 76 years.

e In terms of muscle function it is suggested that declines in maximal voluntary
contraction capabilities (MVC), both static and dynamic, begin in the thirties.
Values between 26% to 38% decline in the quadriceps from 20 to 65 years have
been reported with appreciable losses after 40 years of age.

e In terms of maximal static strength (dorsi and plantar flexors), 80-90% of the
young adult capacity is retained into the seventh decade of life. Rapid losses in
strength were only reported in the age group 80 to 100 years. These losses were
explained in terms of loss of fibre number and reduction in muscle cross-sectional
area. The magnitude of age-associated loss in performance functions appears to
be dependent on the type of physical activity and the degree of muscle
involvement.

e In gross motor activities the ability to produce energy aerobically does not appear
to follow the trends in muscle function.

Meltzer [22] addressed the age dependence of Olympic weightlifting ability and
noted the decline from 30 to 80 plus years was approximately 1-1.5% per year and
was a similar decline in performance that was observed for masters’ sprinters and
jumpers. The declines were non-linear in nature and the second derivative of the
curve (performance versus age) repeatedly changed sign. The best non-linear fit of
the data was for a quadratic function (function S = a + bx + cx®), however this fit may
not reflect the changes in curvature (that expressed by the second derivative).

Anaerobic Metabolism

Reaburn and MacKinnon [23] found no significant difference between age groups for
measures of maximal blood lactate concentration, time to reach maximal blood
lactate concentration and the half recovery time to baseline concentrations of blood
lactate after a maximal sprint swim. Reaburn and MacKinnon [23] concluded that
the decline in sprint-swimming performance with age may be due to factors other
than changes to the anaerobic-glycolytic capacity of the swimmer. The declines in
anaerobic-power output were corroborated on a anaerobic bicycle ergometer test
(maximal anaerobic capacity 30 second test) by Reaburn ([9] and [12]) and once
again, a linear mathematical function was fitted to explain the trends in the data.

Martin [24] reviewed the effects of age and exercise on short term maximal
performance based on the changes in the physiological systems. Both aerobic and
anaerobic changes with age were addressed. Loss of muscle function can effect both
anaerobic and aerobic processes as the muscles release the energy to complete the
mechanical work, which is transduced by levers, pulleys and, wheel and axle
arrangements within the human skeleton, and which results finally in movement.

The loss of maximal aerobic power may reflect the loss of muscle function in terms of
loss of muscle fibres, reductions in mitochondrial enzymes (25 to 40% reductions in
SDH, CS and b-HAD), reduced mitochondrial density, reductions in capillary density
and capillary to fibre ratio.

The anaerobic processes indicated that no age-related changes in terms of glycolytic
enzyme or high energy phosphates have been demonstrated. However, energy
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substrates have shown some declines such as a 61% decrease in muscle glycogen
when sedentary older men (65 years) are compared to younger sedentary men (24
years). As well, men and women, 52 to 79 years, have 5% less creatine phosphate in
striated muscles when compared to younger adults. The neural activation, based on
the current evidence, appears not to change markedly with increasing age, and some
changes thought to be neural in nature may in fact represent changes in muscular
and neuromuscular function (myoneural junction).

Although some of the enzymes and energy substrates display different age-related
changes that may fit different mathematical functions, Martin [24] does not attempt
to fit any specific mathematical functions to the age-related changes. However,
Martin [24] did attempt to integrate the changes associated with aging into a
schematic conceptual figure indicating the specific links, although the specific
statistical weights do not indicate the relative importance of the different constructs.

Body Composition

Going, Williams, Lohman and Hewitt [25] in an extensive review of literature
evaluated the relationship between aging, body composition and physical activity
based on both cross-sectional and longitudinal studies. The cross-sectional studies
indicated that when young male and female adults (20 years plus) were compared to
elderly males and females (up to 80 years), the fat free mass (FFM) decreased by 15 to
30%. However, it must be noted that the rate and degree of FFM loss was influenced
by gender, age, level of physical activity and individual variability. Longitudinal
studies on the loss of FFM using the total body potassium method (TBK), although
fewer longitudinal studies have been conducted than for cross-sectional studies, were
approximately the same, that is 15 to 30% FFM loss.

The losses in FM were attributed to declines in muscle mass, total body water (TBW)
and bone minerals. Specifically:

e The losses in FFM were attributed to loss of muscle mass which were 40% of peak
values in the seventh decade when compared with values in the second decade
of life.

e Total body water declines by 55% in men and 45% in women from early
adulthood to 70 years and is thought to reflect an increase in the fat mass over
this time. After age 70 the TBW may actually increase as body fat decreases in this
age group.

e Bone mineral loss was at a rate of 0.3% per year for males after 50 to 60 years of
age and 1.0% for females between 45 to 75 years although variability in mineral
loss is related to the particular site in the human skeleton.

Determining the changes in fat mass are somewhat more problematical and Going et
al. ([25], p.54) believe due to the methodological differences and measurement error
related to different age groups, state that, “there are no exact descriptions of age
related changes in total body fat in American and other populations.”
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Biomechanical Factors

Hamilton [26] investigated the changes in sprint-stride kinematics with age and
found that stride length of athletes declined with age. The change is not linear with
the greatest change occurring at age 60 years. No significant changes in stride period
were found in the age groups below 90 years. The support time of runners was
found to change significantly (p<.05) at 70 years, swing time showed no change and
flight time was shown to decrease with age (p<.01). The changes in decreased stride
length probably reflects the reduction in force production or strength which has been
noted previously in this review of literature.

Mathematical Modeling

Mathematical modeling is a valid method of examining trends within data sets. The
methodology has both theoretical and practical value as it permits more meaningful
description of the data and prediction of trends in other the sets of data that are
based on a specific mathematical model (Arya and Lander [27], Haefner [28]).
According to Haefner [28] there are three primary uses for scientific and
mathematical models and these are:

e Understanding - Of a various phenomena whether biological, physical, chemical
or geological.

e Prediction - Of some future situation (extrapolation), past situation
(extrapolation) or some other situation that is currently unknown (interpolation).

e Control - To constrain or manipulate a system to produce a desirable condition.

In the realm of sport and human movement, mathematical models have been utilised
extensively to predict various movement constructs (de Mestre [29], de Mestre [30]).
Specifically, the principles have been applied to predict triathlon times (Heazlewood
& Burke [31]), bicycle motor cross times (Politi & Heazlewood [32]), future Olympic
performances in track and field (Heazlewood & Lackey [33], Heazlewood & Lackey
[34]), future Olympic performances in the different swim strokes (Heazlewood &
Lackey [33]) and to integrate diverse findings generated from the different
disciplines within the sports sciences (Heazlewood [35]).

The valuable insights provided by these models have identified what factors
influence performance and how performance will be influenced if the factors are
manipulated, what future level of performance will be required to reach Olympic
finals in swimming and track and field, and provided a greater understanding of the
complex interactions that are expressed as human movement.

Summary

A number of anatomical and physiological factors have been identified that are
thought to decline with increasing age, such as cardiac output, stroke volume,
maximal heart rate, the number of functioning muscle fibres, muscle-fibre size, bone-
mineral density, mitochondrial number, mitochondrial density, muscle-glycogen
stores, creatine-phosphate stores, FFM, body height, blood volume, total
haemoglobin, pulmonary function, maximum diffusion capacity and maximum
blood-lactate values.
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These decline in the anatomical and physiological factors have been presented to
explain the declines in the exercise physiological constructs of maximal aerobic
power, maximal anaerobic power, maximal work output, endurance capacity,
maximal strength and strength performance related to weightlifting.

Although some researchers have attempted to explain in mathematical terms the age-
related changes in athletic performance, especially events based on aerobic power
(marathon), the age-related declines were presented as essentially linear when the
plots of the data were clearly non-linear functions in nature.

Other researchers, although noting the variability in the decline in a number of
anatomical and physiological factors did not attempt to fit any mathematical
functions to the data.

In some research, physiological factors, especially anaerobic enzymes did not change
appreciably and yet sprint, jump and hurdles performances do decline appreciably
with increasing age past 30 years of age as evidenced by state, national and world
records for veteran-masters’ athletes.

Few researchers have attempted to explain or understand human competitive gross
motor performance as an expression of the changes that are occurring at the
anatomical, physiological or biochemical levels as they relate to the process of aging.
As well, few researchers have attempted to plot mathematically the declines in
human competitive performance that may accurately reflect the aging process,
although some researchers believe that the aging process is operating independently
of the fitness level of the individual, especially for those motor activities that are
dependent on cardiovascular-pulmonary fitness.

RESEARCH PROBLEMS

The research indicates that certain constructs such as strength and aerobic ability
have been examined in some depth and specific trends have been delineated.
However a number of research problems can be identified that to a degree can be
answered.

1. The research conducted thus far indicates that certain anatomical structures,
physiological systems, exercise physiological performance, biomechanical
performance, biochemical enzyme concentrations and biochemical substrate
utilisation changes to a degree in their own unique way that describes declines in
human function with increasing age past the third decade of human life. An
interesting but expected outcome of the declines in the various factors should be
that the declines in gross motor performance of the different events in track and
field should reflect different underlying constructs, such as sprints-100m, 200m
(ATP-PC systems), longer sprints 400m, 800m (speed endurance-lactic acid
system-anaerobic glycolysis), endurance events 1500, 5000, 10000 (aerobic power),
throws shot, discus, javelin (ATP system) and the jumps (ATP-CP power
systems). The performance declines, if they conform to a specific pattern, could be
expressed as specific mathematical functions, such as linear, quadratic, cubic,
exponential declines that represent how these underlying energy transductions or
systems decline with age (30 years onwards).
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If the performance decrements reflect homogenous changes generally, that is one
mathematical model fits all changes then one or two mathematical models should
adequately describe and predict the age-related changes.

If the performance decrements reflect heterogeneity of change, that is a number of
mathematical models are required for each event, as the underlying constructs
that predict performance change in their own unique manner.

The genders in some constructs displayed slightly different declines with
increasing age, and if these differences are expressed in competitive performance,
then the genders should display different trends related to age and performance.
However, if the aging process is general to both genders then they should display
identical trends in performance decrements across the different events.

Humans display different athletic abilities, however they all age and competitive
performance ultimately declines. This concept is easily demonstrated when world
records for the different veteran athletic age groups for the different events are
examined. The issue is whether or not the athletes of different ability display
similar or different trends in the decline in motor performance when expressed
by competitive motor performance. That is, will they display similar or different
mathematical functions that describe the performance declines?

RESEARCH QUESTIONS

Does one model fit all events?

Do the sexes (males-females) display different rates and trends in performance
decline?

Do the models reflect the decline in the underlying energy-liberating systems;
ATP-CP (sprints, jumps, throws), anaerobic glycolysis (400m, 800m) and aerobic
power (1500m, 5000m, 10000m)?

Are there complex interactions related to specific events and specific sexes in
terms of performance declines?

Do individual changes in strength and aerobic power when measured by
laboratory assessment reflect what occurs in the field (competitive setting) for
events that are thought to be dependent on these constructs?

Is the aging process independent of the athlete’s ability?

RESEARCH HYPOTHESES

1. If the process of aging is independent of the training status of the athlete, the
mathematical functions that represent the aging process should be common to all
athletes and across all track and field events.

2. If the process of aging is independent of the ability level of the athlete, the
mathematical functions that represent the aging process should be common to all
athletes and across all track and field events.

3. If the process of aging is independent of the gender of the athletes, the
mathematical functions that represent the aging process should be common to both
genders and across all track and field events.
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4. All events will fit a specific mathematical function irrespective of the events
dependence on speed, power, strength or aerobic endurance and will reflect the
general aging process.

RESEARCH METHODS

The data was collected from public domain data, that is, official competition results
that result in state, national and world records. Specifically, national veteran and
world veteran records (Niemi [36]) and data provided by the NSW Veterans’
Athletics Club Inc. [37]. The events examined were the sprints (100m, 200m and
400m), middle distances (800m, 1500m), distances (3000m, 5000m and 10000m), and
jumps (long, triple and high) were utilised. The problem with analysing the throwing
events is the weights of the different implements decline with increasing age as well
as the genders (males and females) have different weights, making comparisons
between the different ages and genders difficult. A similar situation occurs with the
hurdles where the heights are different based on gender and age group. Due to the
problems with the throwing and hurdles events, these events were not included in
the analysis.

All other events were performed under identical distances (sprint and running
events) or rules (jumps). The variability in weather conditions were not considered as
these factors (temperature, humidity and wind) are difficult to include in the
mathematical models. The data for the best performance for each event and gender at
the state (New South Wales), national (Australia) and world records served as the
sets of data in this research. In the majority of cases the persons holding the
respective records were different people.

The data were coded for event, age, gender, time, distance or height. The
independent variable was age group and the dependent variable was the event time,
distance or height achieved. The software program utilised was SPSSX 6.1.3 (Norusis
[38]; SPSS Inc. [39]. The data was assessed against both linear and non-linear
mathematical models. The potential mathematical functions (curve-estimation
regression models) that could be fitted to the data were linear, logarithmic, inverse,
quadratic, cubic, compound, power, sigmoidal (S), growth, exponential and logistic
in nature.

General Method of Determining the Appropriate Regressions Models

A number of criteria were selected to assess which function best fitted the data. These
were the R’-value, the F-value, p-value and residuals (difference between the model
and data points). The model that best conformed to these criteria was selected as the
best fit. If two or more models were identical these were examined against the logical
empirical trends displayed by the performance decrements. For example, it was
unlikely that the older age groups 70 to 80 years would display performance
increments with increasing age when compared to younger age groups.

The Coefficient of Determination

The coefficient of determination (R’) is a measure of accuracy of the model used. A
coefficient of determination of 1.00 indicates a perfectly fitting model where the
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predicted values match the actual values for each independent variable (Norusis [38];
SPSS Inc. [39]). Where more than one model was able to be selected due to an equal
R’, the simplest model was used under the principle of parsimony, that is the
avoidance of waste and following the simplest method (SPSS Inc. [39]).

Residuals

The residuals are the difference between the actual value and the predicted value for
each case, using the regression equation (Norusis [38]; SPSS Inc. [39]). The smaller
the residual, the better the fit of the model. For each model the residuals were
generated by the SPSS program. A large number of positive residuals indicate that
the prediction is an over-estimation or faster than the actual performance and a large
number of negative residuals indicates an under-estimation or slower time than the
actual performance.

Level of Significance

The level of significance, or p value, is a representation of the relationship between
the model and the data. The smaller the p value, the higher the level of significance
and the greater the relationship. A small p value indicates a small possibility of the
closeness of the predicted values to the actual values.

Logical Acceptance Based on Extrapolations

The ability of the model to generate extrapolations that appear to be reasonable when
compared to previous performances was also taken into consideration. When a
model generated extrapolations that appear to be inconsistent with the actual results
this model was discarded and the model with the next highest coefficient of
determination was selected.

RESULTS

In the majority of events the models (mathematical functions) that best fitted the data
were the quadratic and cubic models. The models of best fit for each event, at state
(NSW), national (Australian) and world record level are shown in Tables 1 and 2.
The only event to be best described by a model other than cubic or quadratic was the
Women’s 800m at the national level. This event was best described by an inverse
model (R* = 0.949, p=0.026). In this case the coefficients of determination for the
cubic and quadratic models were 0.945 and so it is feasible that either of these models
could be utilised to describe the trends of performance decline at the national level.
The coefficients of determination ranged from 0.732 for the Women’s 800m NSW
record to 0.997 for the Men’s 5000m NSW record.

In the majority of events the significance of the fit of each model, whether it was
cubic, quadratic, linear, inverse, compound and so on, was high (in most instances
p<0.001). The main exception to this was the Women’s 800m at the state level where
p = 0.0517 and was considered non-significant.
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Regression Models, Coefficients of Determination and Levels of Significance (p) for

Men’s New South Wales, Australian and World Records.

Event State National World

R’ Model p R’  Model p R’ Model p
100m 994  Cubic <001 .989 Cubic <001 .951 Cubic <.001
200m 921 Cubic <001 .984 Cubic <001 959 Cubic <.001
400m 994  Cubic <001 .953 Cubic <001 .970 Cubic <.001
800m 986 Cubic <.001 .987 Cubic <001 943 Cubic <.001
1500m  .927 Cubic <.001 .900 Cubic .001 958 Cubic <.001
5000m  .963 Cubic <001 .984 Cubic <001 945 Cubic <.001
10000m .980 Cubic <001 .976 Cubic <001 .953 Cubic <.001
Long 972  Quadratic <.001 .960 Quadratic <.001
Jump
High 965 Quadratic <001 918 Cubic <.001
Jump
Pole 928  Quadratic  .005 926 Cubic 001 989 Cubic <.001
Vault
Triple  .608 Cubic 038 919 Quadratic <.001 .981 Cubic <.001
Jump

Table 2

Regression Models, Coefficients of Determination and Levels of Significance (p) for
Women’s New South Wales, Australian and World Records.

Event State National World

R’ Model p R’ Model p R® Model p
100m 990 Cubic <.001 980 Cubic <.001 .949 Cubic <.001
200m 961 Cubic <001 966 Quadratic .001 962 Cubic <.001
400m 981 Quadratic <.001 997 Cubic <001 901 Cubic <.001
800m 732 Cubic 517 949 Inverse .026 977 Cubic <.001
1500m  .996 Quadratic .004 972  Quadratic .028 992  Cubic <.001
5000m .997 Cubic .058 996  Cubic .060
10000m 902 Cubic <.001
Long 974 Quadratic <.001 .966 Quadratic <.001 949 Cubic <.001
Jump
High 965 Cubic .035 999  Cubic .001 974 Cubic <.001
Jump
Pole 976  Cubic <.001
Vault
Triple .876 Quadratic .002 969  Quadratic <.001 .968 Cubic <.001

Jump
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Tables 3 and 4 show the regression equations derived for selected events at state,
national and world record level.

Table 3

Regression Models and Equations for Selected Men’s Events.

Record Model Equation

Men’s 100m NSW Cubic y =20.95-.63age+.0lage* — 60*107° age’
Men’s 100m Australian  Cubic y =12.65-06age—5.0*10" age’ +1.7%107 age’
Men’s 100m World Cubic y =1231-.002age” +38*107 age’

Men’s 400m NSW Cubic y =-1095+4.15age—096age’ +.0008age’
Men’s 400m Australian  Cubic y = 53.64—.01age*+.0002age’

Men's 400m World Cubic y = 65.05-.02age*+.0003age’

1500m NSW Cubic y =352.63—-16age’+.002age’

1500m Australian Cubic y = 348.82—.16age*+.002age’

1500m World Cubic y =288.11-.09age’+.001age’

Long Jump NSW Quadratic y = 7.4+.002age—.001age’

Long Jump Australian =~ Quadratic =~ y=599-7.0*107°.09age’ - 6.0*10 age’
Long Jump

High Jump NSW Quadratic ~ y=2.49-017age—10*107 age®

High Jump Australia Cubic y =251-02age—3.7*107" age’

High Jump World

Table 4

Regression Models and Equations for Selected Women'’s Events.

Record Model Equation

100m NSW Cubic y =1231-.08age—.002age’

100m Australian Cubic y =1327-003age’ +48*107 age’
100m World Cubic y =10.8-.0001age” +1.7*10 age’
400m NSW Quadratic y =11232-319age—.04age’
400m Australian Cubic y = 70.93-.03age’ +.0005age’
400m World Cubic y =105.61-.063age’ +.001age’
1500m NSW Quadratic y =42298-9.25age+15age’
1500m Australian Quadratic y =494.45-1245age+17age”
1500m World Cubic y =21018-133age +.06age’
High Jump NSW Cubic y =14+.0006age’ +1.0*10 age’
High Jump Australian  Cubic y = 1.67+.0001age —3.0*10° age’
High Jump World

Long Jump NSW Quadratic y = 2.12+.21age—.003age’

Long Jump Australia Quadratic y = 1.17+.26age—.003age>

Long Jump World Quadratic
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Figures 1 to 4 show the predicted values for each gender according to the model of
best fit. The decline in performance for each event is readily seen in the figures, as is
the similarity, between the genders of the curves of best fit. Figure 3 which shows the
models for the 1500m shows interpolated values for the Women’s 30 World record to
be faster than that of the Men at the same age. The actual records do not reflect this.
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Figure 1: Cubic Models Representing the Men’s and Women’s 100m World Records.
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Figure 3: Cubic Models Representing the Men’s and Women’s 1500m World Records.
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Figure 4: Cubic Models Representing the Men’s and Women’s High Jump World
Records.

Figures 5 and 6 show the trends of decline, using cubic models, with age at each of
the State, Australian and World record levels for the Men’s and Women’s 100m. The
curve for the Men’s NSW record shows an apparent anomaly at the 80 year age,
where the interpolated time is faster than those for the national and world records.
In the Women’s 100m a similar occurrence appears at the 80 years group where the
NSW record is predicted to be faster than the Australian record. These are not
possible occurrences based on the current actual data.
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Figure 6: Cubic Models Representing the Women’s 100m records at State, National
and World Level.

Figures 7 and 8 show the relative fits at each level for the Men’s and Women’s 400m
record. For both genders the predicted world record at the 30 year age are slower
than those for the NSW and Australian records. At the 90 year age group the
interpolation for the Australian record are faster than those for the world record.
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Figure 8: Cubic Models for Women’s 400m records at National and World Level,
and a Quadratic Model Representing the Women’s NSW 400m Record.

The Men’s and Women’s 1500m records are represented in Figures 9 and 10. In these
figures there does not appear to be any deviation from the expected relative records.
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Figure 10: Quadratic Models Representing the Women’s 1500m Records at State and

National and a Cubic Model Representing the Women’s 1500m World
Record.

The models for the Men’s and Women’s High Jump records are shown in figures 11
and 12. In Figure 11 a deviation from the expected relative position of the records is
seen at age 80, where the interpolated Australian record is higher than that for the
world record. The negative heights shown for the NSW records may be due the fact
that data only to the 50 year age group was collected for this record which produces
predictions that do reflect realistic predictions, in fact they predict zero and minus
heights.
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DISCUSSION
General Aging Construct

The most important question to be addressed is, is aging a generalised aging process
expressed throughout the body or do different systems and structures within the
human age in their own unique manner and then will the aging process be expressed
as performance decline in a specific age-related manner? Based upon the findings of
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this research as the majority of the decline was expressed as a cubic mathematical
function across all the different athletic events and for both genders especially for the
data based on world records. This result suggests that the mathematical function
describes an aging process that is general to the human organism and that we are at
any time (assuming we are alive) on some segment of the curve represented by the
cubic function. Although humans display different levels of athletic ability such as by
state, national and world records these people are still conforming cubic decline
trend in performance, its just that the curve has different constants and coefficients.

Energy Systems

In the men’s events the decline in performance in the majority of cases conformed to
a cubic model closely followed by the quadratic model. Specifically, the events
related to the ATP-CP system, that is the 100m, long jump and high jump, fitted the
data very closely with R* ranging from 0.918 to 0.990 for the state, national and world
records. The Men’s Triple Jump although having a lower R’, that is R* = 0.608, the
best fitting model was still the cubic model.

Events that are thought to depend on the anaerobic-glycolysis and some ATP-CP
input, that is the 200m and 400m, also revealed a good fitting cubic model (R* 0.921 to
0.994).

The events that were dependent predominantly on aerobic metabolism displayed
cubic models for the men (1500m, 5000m and 10000m) and cubic-quadratic models
for the women (1500m and 5000m). It is interesting to note that the 800m which is
thought to be dependent on the anaerobic-glycolytic and aerobic systems also
displayed a cubic model for the males and in the majority of cases a cubic model for
the females.

When all the mathematical models describing the age-related declines across all the
events and ability levels (state, national and world) are counted 26 were cubic and
five were quadratic-cubic for the men and 19 were cubic, eight were quadratic-cubic
and one was inverse for the females. When world records were examined alone, all

models were cubic for both men and women with R’ close to 1 for all events (R, from
0.901 to 0.992).

These data indicate that the decline appears to independent of the event representing
the different energy-liberating mechanisms, although the review of literature
indicated that different anatomical and physiological constructs displayed unique
patterns of decline or loss of function. The review of literature would suggest that the
declines of specific events that depend predominantly on the three different energy
producing systems should display unique mathematical functions that reflect the
changes in the underpinning systems that are expressed as performance. This was
not the case based on the comprehensive data sets in this research.

Models Related to Gender

Gender differences in anatomical and physiological constructs in some cases were
presented as gender specific, such as changes in body composition, whereas other
constructs were not, such as strength, cardiovascular and pulmonary function. The
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constructs of strength, cardiovascular and pulmonary function which are thought to
underpin the declines in anaerobic and aerobic power with increasing age and
should be reflected as changes in the sprints, jumps, middle distance and longer
distances were not markedly different between the genders based on the findings of
this research. These findings may indicate that age-related declines in strength,
cardiovascular and pulmonary function are far more important in determining
declines in competitive performance than changes in body composition as the
mathematical function describing performance changes with age were almost
identical, especially based on world record performances.

Some additional mathematical models were derived based on national records from
Finland to assess if the trends based on New South Wales State Records and
Australian National Records were replicated. These results are presented in
Appendix I for the interest of the reader. It is important to note that the sprint,
middle distance, long distance and the jump events produced the consistent cubic
model followed by the quadratic model in the majority of events, and that described
the declines in competitive performance with increasing age from 30 to 90 years.

CONCLUSIONS

1. The decline in human motor performance for the majority the data sets based on
the veteran athletic events, that is the sprints, horizontal jumps, vertical jumps,
middle distance and long distance events conformed closely fitted a cubic
mathematical function followed by a quadratic mathematical function. In a small
number of events multiple mathematical functions closely fitted the data, that is
cubic, quadratic, compound, growth, exponential and logistic functions.

2. The model fits, based on the fit indices of R’, p-values, residuals and the logical fits
based on interpolation and extrapolation were exceptionally close to the data sets
with the majority of Rs greater than 0.95.

3. The model fits based on the cubic and quadratic functions were consistent across
all events analysed in this research.

4. The model fits based on the cubic and quadratic functions analysed in this research
were consistent across all events and for the participants’ level of competitive ability.

5. The model fits based on the cubic and quadratic functions were consistent for
gender across all events analysed in this research.

6. The general aging process as reflected by the consistent declines in performance
appears to be independent of ability level, athletic event and gender.

7. The ability to predict the age-related decline in performance for an individual
could be predicted with reasonable accuracy independent of ability level, athletic
event and gender.

8. This research indicates that the general aging process and the aging process
reflected in the consistent declines in human motor performance based on speed,
power and endurance, and is the dominant factor that explains declines in gross



Performance Decline in Elite Veteran Athletes 30-90 years 73

motor behaviour. The training process is then just an overlay to the general trends of
human aging.

9. The partistic analysis of anatomical and physiological functions such as energy
systems, muscle function, cardiovascular system, the pulmonary system, FFM and
FM do not explain or represent the complex interactions that are expressed as
competition human motor performance.

10. The partistic approaches must be integrated into a more holistic analysis to
explain human motor behaviour both within the laboratory and field (competitive)
settings.
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APPENDIX I

Table A1l

Event Model R’ Level of Sig.
100m Cubic .978 <.001
Quadratic 975 <.001
200m Cubic .980 <.001
Quadratic 972 <.001
400m Cubic 987 <.001
Quadratic .985 <.001
1500m Quadratic .989 <.001
Cubic .988 <.001
Compound 962 <.001
3000m Cubic 961 <.001
Quadratic .949 <.001
5000m Cubic 992 <.001
Quadratic .986 <.001
10000m Cubic .984 <.001
Quadratic .980 <.001
Marathon Cubic 989 <.001
Quadratic 987 <.001
High Jump Compound 969 <.001
Growth 969 <.001
Exponential 969 <.001
Logistic .969 <.001
Cubic .966 <.001
Quadratic .966 <.001
Pole Vault Cubic .959 0.041
Quadratic 941 0.059
Long Jump Cubic 949 <.001
Quadratic .948 <.001
Linear .948 <.001
Triple Jump Cubic 936 <.001
Quadratic .936 <.001
Linear 930 <.001
Discus Compound 967 <.001
Growth 967 <.001
Logistic 967 <.001
Exponential 967 <.001
Cubic 962 <.001
Quadratic .962 <.001
Logarithmic 962 <.001
Shot (3kg) Cubic 979 <.001
Quadratic 979 <.001
Compound 977 <.001
Growth 977 <.001
Logistic 977 <.001
Exponential 977 <.001
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Table A2

Regression Models - Finnish National Records - Men’s Events.

Event Model R’ Level of Sig.
100m Cubic 967 <.001
200m Cubic .871 <.001
400m Cubic .850 <.001
800m Cubic .990 <.001
Quadratic .986 <.001
1500m Cubic .843 <.001
3000m Cubic .988 <.001
Quadratic 986 <.001
5000m Cubic 970 <.001
10000m Cubic .990 <.001
Quadratic .987 <.001
Marathon Cubic 991 <.001
Quadratic 984 <.001
High Jump Cubic 954 <.001
Quadratic 947 <.001
Pole Vault Cubic 993 <.001
Quadratic 993 <.001
Linear 992 <.001
Long Jump Cubic 991 <.001
Quadpratic 991 <.001
Triple Jump Cubic 975 <.001

Quadratic 972 <.001
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THE USE OF MATHEMATICAL MODELS TO PREDICT ELITE SWIMMING
PERFORMANCE

Gavin Lackey' and Ian Heazlewood'

Abstract

The knowledge of future levels of sporting performance has been identified as
beneficial in talent identification, the setting of goals by competitors and team
selection. The trends of Olympic swimming performance from 1924 to 1996 have
been analysed using one linear and ten non-linear models with the intention of
predicting future performance levels. The mean from each Olympiad of each
Freestyle swimming event that was contested at the 1996 Olympic Games was used
as the data set for the regression analyses. The regression models used were linear,
inverse, logarithmic, quadratic, cubic, power, sigmoidal, compound, logistic,
exponential and growth. The coefficient of determination, level of significance and
an analysis of the residuals were used to select the most appropriate model. The
logical acceptance of the model was based on extrapolations of future performance.
The final model was used to predict, through the use of extrapolation, future
performance means. Factors that may have had an effect on swimming
performance at previous Olympic Games such as hand-timing, the use of drugs
and the political boycotts of 1980 and 1984 were also incorporated into the models.
The model used for extrapolation of performance in the year 2000 was for every
event a non-linear model with coefficients of determination ranging from 0.543 for
the Men’s 50m Freestyle to 0.977 for the Men’s 400m Freestyle. It may also be
possible to incorporate other factors such as the total number of competitors,
number of nations represented and temperature of the pool into future regression
equations. The opportunity exists to investigate the trends of performance in other
events where performance is measured by time or distance. Where performance is
measured by subjective means this type of research would not be appropriate.

1. INTRODUCTION

The knowledge of future levels of sporting performance has been identified by
Banister and Calvert [1] as beneficial in the areas of talent identification, both long
and short term goal setting, and training program development. In addition,
expected levels of future performance are often used in the selection of
representative teams. For example, the Australian Sports Commission [2] stated that
to be eligible for selection in a national team a swimmer must record a time equal to
or better than that of the 16" ranked swimmer in the world in the previous year. At
this stage in the analysis of swimming data it appears that the data from the previous
year is the most accurate indicator of current performances. This does not, however,
account for any underlying trends that may have been occurring over a number of
years. For example, a year of poor results in one event does not necessarily infer that
poor results will continue in this event in the near future.

Australian Catholic University, 40 Edwards Street, North Sydney NSW 2060



80 Gavin Lackey and Ian Heazlewood

The prediction of performances that might be expected of competitors in future
competitions is a recurring theme in sports, especially during Olympic years. Often
these predictions are purely speculative and are not based upon any substantial
evidence, rather they are based on the belief that records are made to be broken and
that performances must continue to improve over time.

The accessibility of data in the form of results from Olympic Games, world records
and world best performances in a specific year allows the analysis of performances in
any number of events. From such analysis changes in performance levels, that is,
times, can be observed and predictions of future performance levels can be made via
the process of mathematical extrapolation.

2. RESEARCH PROBLEM

A review of the published literature revealed an apparent lack of analysis of the
mathematical trends in the change of swimming performance at the Olympic Games.
The fact that performances have improved is well documented, as are many of the
possible reasons behind these improvements such as changes in training methods,
changes in technique, improvements in the competition and training environments,
the use of performance-enhancing drugs and increases in the participation rate. The
manner of these improvements as a result of the genetic and environmental changes
does not appear to have been investigated. Therefore, the problem was to use
scientific methods in conjunction with the available data to determine if these
improvements in swimming performance have occurred in a regular manner and
whether the trends of change can be used to predict future performance levels based
on the mathematical-statistical modeling.

3. RESEARCH QUESTIONS

A number of research questions were generated by the reviewed literature which
relate to the constructs of the changes in swimming performance. These questions
were:

1. What is the best mathematical model for the available data in each event?

2. Can the effects of androgenic and anabolic steroids and other performance-
enhancing substances be accounted for, and thus provide more accurate models?

Does countering the effects of hand-timing prior to 1964 improve the models?
Does each event have a specific model or does one global model apply?
Will the models be gender specific as well as event specific?

Will the mathematical model allow accurate predictions of future performance?

N o W

Will the models derived generate absurd predictions such as those of a zero or
negative time?

8. How much variance will be explained in the different models for each event and
gender?
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4. RESEARCH HYPOTHESES

According to Rothstein [3], research hypotheses are predictions that are tested
through the use of research. Statistical hypotheses, which are normally stated as null
hypotheses suggesting that there will be no difference, are used to evaluate research
hypotheses. Statements that there will be a difference are classified as alternative
hypotheses. The following hypotheses are stated as alternative hypotheses.

1. The modeling procedure will allow predictions of future swimming performance
for the Freestyle events at the Olympic Games. These events are 50m Freestyle,
100m Freestyle, 200m Freestyle, 400m Freestyle, for men and women, the 800m
Freestyle for women and the 1500m Freestyle for men.

2. More variance will be explained through the use of non-linear models, therefore
reducing the amount of error variance (the unexplained component). This means
more accurate models describing the relationship between event times and the
specific Olympiad will be derived.

3. The effects of steroids and other performance enhancing substances will be seen to
a greater degree in the Women’s results and correction for these effects will allow
better predictions based on the derived models predicting future performance.

4. Corrections for hand-timing prior to 1964 will not greatly improve the fit of the
derived models.

5. Each event will be best described by a specific mathematical-statistical model.

6. The models in addition to being event specific will be gender specific. This means
that each gender in each event will be described by a specific mathematical model.

7. The use of non-linear models will result in less absurd predictions such as those of
a zero time or negative times for all swimming events analysed in this study.

5. METHODS AND STATISTICAL ANALYSIS

The basic premise applied was one of plotting the mean result of the finalists for each
event against the year of performance, then determining which of a number of
regression models provided the straight line or curve of best fit. This model was
then used to predict future performance in each event based on mathematical
extrapolation.

As linear regression models such as those used by Edwards and Hopkins [4], despite
high coefficients of determination, have major deficiencies, a number of non-linear
regression models were applied to the data to determine the lines or curves of best fit
for past performances. The non-linear regression models are based on the curve of
best fit as compared to the line of best fit that is used with linear regression (Norusis

[5D.

The sampling procedure in this study was, in effect, self selecting. Given the rewards
and accolades of Olympic success it was assumed that each swimmer gave their best
effort on a number of occasions. These occasions are:
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1. National selection trials.
2. Qualifying heats at the Olympic Games.
3. The final of the Olympic Games.

Following these assumptions it is reasonable to expect that those swimmers who
competed in each Olympic final were the best eight swimmers in the world at that
time of competition.

The results for the finalists in each current Olympic Freestyle swimming event were
collected. Times were recorded to one hundredth of a second which is the recording
method used by Federation Internationale de Natation Amateur [6]. These times
were then converted from a minutes and seconds format (mm:ss.th) to a seconds only
format (ss.th) to facilitate calculations when applying the regression methods. The
mean of the finalists in each event for each year in the study was then calculated.
The mean was used as it is a measure that is representative of all scores in each group
(Rothstein, [3]). The use of the mean of the finalists in this study may be more
representative of the changes in human performance that have occurred as used by
Jokl and Jokl [7], [8] and [9]) and Edwards and Hopkins [4]. A world record holder’s
performance may be far in advance of that of any other competitor and not be
representative of overall performance. For example, the women’s 400m Freestyle
world record as set by Tracey Wickham in 1978 was not bettered until 1988 at the
Seoul Olympic Games (Wallechinsky [10]).

The calculated means were then included as a data set for analysis by the Statistical
Package for the Social Sciences (SPSS) program version 6.1 (Norusis [5]; SPSS Inc.
[11]) in order to derive a number of regression equations for each event.

To determine if this method was actually viable the means from the 1996 Olympiad
were initially excluded from the data set and the extrapolated means using the
regression models were compared to the actual means from the 1996 Olympic
Games.

Predictions Based Upon Years Where Androgenic and Anabolic Steroids are not
Known to be Involved

The use of steroids and other performance enhancing substances in the 1970’s, 1980’s
and early 1990’s is well documented (Georges [12]; Helmsteadt [13], [14]; Muckenfuss
[15]). In an attempt to determine the effects that the use of steroids and other
performance enhancing substances may have had on elite swimming performances
the results from the 1976 to 1996 Olympic Games were removed. It is well
documented that many of the finalists at these Olympiads had used or were using
some form of performance-enhancing drugs.

Corrections for Hand-Timing Prior to 1964

Hypothesis 4 states that, corrections for hand-timing prior to 1964 will not greatly
improve the fit of the models. Prior to 1964 timing at the Olympic Games was
performed by hand. This hand-timing is a source of what may be an error in the
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actual time taken to complete the event. Whilst the difference between automatic
timing and hand-timing is swimming does not appear to have been quantified, a
number of researchers have investigated reaction time. Abernethy, Kippers,
Mackinnon, Neal and Hanrahan [16] and Schmidt [17] have noted that reaction time
to an anticipated signal for a simple motor task ranges between 0.1 seconds and 0.2
seconds. In athletic events that are timed by hand a ‘correction” of 0.24 seconds is
applied to counter the effect of the timekeepers’ reaction times (Athletics Australia
[18]). In acknowledging this, a correction of 0.24 seconds was added to the mean
times of the results prior to 1964.

In relation to the duration of each event 0.24 seconds is quite small and thus it is
expected that such a small factor would not greatly change the models. Any change
would be expected to become smaller as the length of time taken to complete each
event increases. For example, the effect should be greater in the 100m Freestyle than
in the 1500m Freestyle.

All events that were contested prior to 1964 were included in this data set, with the
exclusion of the 1996 results. A set of regressions were performed and the selection
of the most appropriate model made according to the criteria previously stated.
Predictions of 1996 performance in these events were then made and compared to
the actual performances. For this hypothesis to be supported the models generated
need to be similar to those without the correction factor included.

Regressions Incorporating the Boycott Years of 1980 and 1984

A number of swimmers were unable to compete at the Olympic Games of 1980 and
1984 due to political boycotts of these games by their countries. It is possible that the
swimmers in the finals at these Olympics were not the best in the world at that time.
In fact, Wallechinsky [10] noted a number of instances where competitors at the
Goodwill and Friendship Games held, soon after the Olympic Games, performed
better than the medallists of the Olympics.

Combination Sets of Regressions

Two further series of regressions that combined each of the above series were also
performed. These series were ‘Hand-timing and steroid free” and ‘Boycott years and
hand-timing’.

GENERAL METHOD OF DETERMINING THE APPROPRIATE REGRESSIONS MODELS

To investigate the hypotheses of model fit and prediction, the eleven regression
models were individually applied to each of the swimming events. The regression
equation that produced the best fit for each event, that is, produced the highest
coefficient of determination (abbreviated as R’), was then determined from these
eleven equations. The specific criteria to select the regression equation of best were
the magnitude of R, the significance of the analysis of variance alpha or p-value and
the residuals.
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The Coefficient of Determination

The coefficient of determination (R’) is a measure of accuracy of the model used. A
coefficient of determination of 1.00 indicates a perfectly fitting model where the
predicted values match the actual values for each independent variable (Norusis [5];
SPSS Inc. [11]). Where more than one model was able to be selected due to an equal
R’, the simplest model was used under the principle of parsimony, that is the
avoidance of waste and following the simplest method (SPSS Inc. [11]).

Residuals

The residuals are the difference between the actual value and the predicted value for
each case, using the regression equation (Norusis [5]; SPSS Inc. [11]). The smaller the
residual, the better the fit of the model. For each model the residuals were generated
by the SPSS program. A large number of positive residuals indicate that the
prediction is an over estimation or faster than the actual performance and a large
number of negative residuals indicates an underestimation or slower time than the
actual performance.

Level of Significance

The level of significance, or p value, is a representation of the relationship between
the model and the data. The smaller the p value, the higher the level of significance
and the greater the relationship. A small p value indicates a small possibility that the
possibility of the closeness of the predicted values to the actual values is due to
chance is small.

Logical Acceptance Based on Extrapolations

The ability of the model to generate extrapolations that appear to be reasonable when
compared to previous means was also taken into consideration. When a model
generated extrapolations that appear to be inconsistent with the actual results this
model was discarded and the model with the next highest coefficient of
determination was selected.

APPLYING THE MODEL OF BEST FIT

After selection of the model to be used, according to the criteria previously stated,
the equation of best fit was determined by applying the derived constants and
coefficients to the generic formula for that model. Using this equation, a prediction
of the mean result for the event at each Olympiad was calculated. At this stage,
graphs representing the means of past and future performances for each event in
each Olympiad were also generated in addition to predicted means using the
appropriate regression equation.

FINAL PREDICTIONS FOR THE YEAR 2000 AND BEYOND

To predict the level of performance in the year 2000 and beyond, the data set that
provided the greatest accuracy was chosen and the data from 1996 reincluded in the
data set, where appropriate. A series of regressions were made using the best fitting
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model and data set for each event. Using the constants and coefficients generated by
regression models the future predictions were then calculated.

6. RESULTS

The data set, model, R? level of significance of the best fitting model for each of the
Freestyle swimming events are shown in Table 1. Also included in this table are the
predicted means for each of these Freestyle swimming events as calculated using the
appropriate regression model.

Table 1
Data Set, Model, Coefficient of Determination, Level of Significance and Predicted
Mean for the Year 2000
EVENT DATA SET MODEL R’ LEVEL  MEAN
OF SIG.
Men’s 50m Freestyle All Inverse 0.543 0.473 22.26

100m Freestyle = Hand-timing =~ Compound 0.972 <0.001  48.17

200m Freestyle  All Sigmoidal 0.862 0.001 105.57
400m Freestyle  All Cubic 0.977 <0.001  219.03
1500m Freestyle All Cubic 0.963 <.001 854.72
Women’s  50m Freestyle All Inverse 0.732 0.347 25.11
100m Freestyle = Hand-timing  Cubic 0.959 <.001 54.81
200m Freestyle  Boycott Sigmoidal 0.812 0.037 117.90
400m Freestyle  Steroid Free Cubic 0.976 <0.001 217.97
800m Freestyle  Boycott Sigmoidal 0.692 0.040 496.38

* Time is recorded in seconds.

Comparisons of the actual mean from the 1996 Olympic Games with the predicted
means for the 2000 Olympic Games are shown in Table 2. Also included in this table
is the percentage improvement required to achieve the predicted means.

The predictions, with the exception of the Women’s 400m Freestyle, seem reasonable
in the light of the past performances with all other required improvements being
equal to or less than 6.10%.
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Table 2

Actual 1996 Means, Predicted Means and Percentage Improvement Required

Event Actual Predicted Percentage
1996 2000 Improvement

Men’s 50m Freestyle 22.47 2226 ** 0.93
100m Freestyle 49.31 48.17 2.31
200m Freestyle 108.40 105.57 2.61
400m Freestyle 230.57 219.03 5.00
1500m Freestyle  910.29 854.72 6.10

Women’s 50m Freestyle 25.37 25.11 1.02
100m Freestyle 55.37 54.81 1.01
200m Freestyle 119.95 117.90 1.71
400m Freestyle 250.00 217.47 13.01
800m Freestyle 514.89 496.38 3.59

* Time is recorded in seconds. ** Time is recorded in seconds.

The regression equations as generated by the SPSS program are shown in Table 3. In
this table 'y’ represents the predicted mean and ‘year’ is the prediction variable, the
year of performance.

Table 3

Final Regression Equations

Event Type Equation
Men’s 50 Freestyle Inverse y = —44.77 + 134064.199 / year
100 Freestyle =~ Compoun  y =42747.22x.99>
d
200 Freestyle =~ Sigmoidal =y = 7133+1197198/year
400 Freestyle ~ Cubic y =12572.61—8.79 x year + 653x 107 x year®
1500 Freestyle ~ Cubic y = 4045713 —2731x year + 1.88x107° X year’
Women’s 50 Freestyle Inverse y =—71.68 +193578 / year
100 Freestyle ~ Cubic y =741711-548 % year + 45x107 x year’
200 Freestyle ~ Sigmoidal =y = g 054#8451.02/year
400 Freestyle  Cubic y =1565—-1.68 %107 X year’
800 Freestyle = Sigmoidal  y = o7!26+149388/year
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The regression curves as generated by the SPSS program are shown in Figures 1 to
10. The change in performance level is apparent in the charts, as is the closeness of fit
for the regression curves.
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Figure 4.1: Men’s 50m Freestyle. R* = 0.543, p=.473, using all data.
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Figure 4.2: Men's 100m Freestyle. R* =0.972, p<.001, using the hand-timing data set.
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Figure 4.3: Men’s 200m Freestyle. R* = 0.862, p<.001, using all data.
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Figure 4.4: Men’s 400m Freestyle. R* = 0.977, p<.001, using all data.
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Figure 4.5: Men’s 1500m Freestyle. R* = 0.963, p<.001, using all data.
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Figure 4.6: Women’s 50m Freestyle. R* = 0.732, p=.347, using all data.
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Figure 4.7: Women’s 100m Freestyle. R’ = 0.959, p<.001, using the hand-timing data

set.
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Figure 4.8: Women'’s 200m Freestyle. R’ = 0.812, p<.037, using boycott data set.
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Figure 4.9: Women's 400m Freestyle. R* = 0.968, p<.001, using the ‘steroid free’ data

set.
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Figure 4.10: Women's 800m Freestyle. R’ = 0.692, p=.04, using the boycott data set.
Checking for the Possibility of Absurd Predictions

Absurd predictions, such as those of a zero time, were able to be made by Edwards
and Hopkins [4]. By using non-linear models it was projected that such predictions
would be reduced or eliminated. An attempt to solve the regression models derived
was made where a value of zero was used for 'y’ (y = 0) to determine if it were
impossible to predict a zero time using the model.
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For those events were a zero time was able to be determined the year of this
occurrence is shown in Table 4. The trend towards this zero time is illustrated in
Figures 11 and 12 which represent the actual means to 1996 and the predicted means
for the years past 2000.

Table 4

Year of Zero Time According to Regression Models

Event Model Year

Men’s 50m Freestyle Inverse 2994

Women’s 50m Freestyle Inverse 2700
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Figure 11:  Men’s 50m Freestyle.
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SUMMARY OF RESULTS

The major findings of the results of this study were:

1.

Non-linear mathematical models provide better fitting curves of best fit than
linear models and by using these models it is possible to predict swimming
performance with more accuracy.

The removal of the data from the years 1976 to 1996, which are known to be
confounded by the use of performance enhancing drugs such as androgenic and
anabolic steroids, did not allow for more accurate predictions in most swimming
events.

The hand-timing ‘correction” of 0.24 seconds did not dramatically change the
regression models of best fit.

There was not a single set of data, that is all data, ‘steroid free’, hand-timing, or the
boycott free data set, or the combination sets, that was able to best describe all
events.

The predictions of performance for the year 2000 made using the appropriate
models were realistic when compared to the performances from 1996.

7. DISCUSSION

The changes in performance in the Freestyle swimming events can readily be seen in
Figures 1 to 10. These events have shown an improvement in performance (decrease
in time) from inception to 1996. Performances are expected to improve over a period
of time due to a number of factors, such as:

1.

The use of more efficient swimming techniques, a biomechanical construct.

2. Improved training programs, an exercise physiological construct.
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3. Enlarged population from which elite swimmers are drawn which results in an
increased sample from the gene pool, a genetic construct.

4. Changes in human physiology, such as the recent trends in increasing height and
weight (Dyer [19]).

5. The use of performance enhancing drugs, especially androgenic and anabolic
steroids which have a masculinizing effect on women (Verroken [20]).

The overall manner of these improvements can only be seen after the appropriate
regression model for each event has been determined. Banister and Calvert [1] have
noted that changes in sporting performance appear to occur in a regular pattern. The
task of determining this pattern for the Freestyle swimming events has been
undertaken in this study. The results of this study are used as the base for the
discussion which addresses the research issues that arise from the research questions
and hypotheses generated previously.

Hypothesis 1

Hypothesis 1 stated that the models derived will allow predictions of future
performance. This hypothesis was supported in entirety. The predictions for 1996,
made using data up to 1992, were accurate within 5% in all but two cases. These
events are the Men’s 1500m Freestyle and the Women’s 400m Freestyle. Attempts to
further increase the accuracy of the models are made in later sections of the study.

It was also possible to determine, through the process of interpolation, a mean result
for those years where a particular event was not conducted. Apart from 1916, 1940
and 1944 where the Olympic Games were cancelled due to war, the Men’s 400m
Freestyle was not held in 1920. The predicted means, according to the appropriate
models using all data to 1996, were derived through interpolation and are shown in
Table 1. Tables 4 and 5 shows the predicted means for events not contested either
due to war or unspecified reasons. All of the means shown in Tables 4 and 5 are
reasonable in that the actual results are not too different, in terms of performance
time, from the predicted means when these means are compared to the means from
the previous and subsequent Olympiads.
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Table 4

Predicted Means (Using all data) for Men’s Events not Contested at Various
Occasions. Time is Recorded in Seconds.

Event Year Predicted Previous Subsequent
Mean Mean Mean
Men’s 100m Freestyle * 1916 67.42 65.16 62.40
* 1940 62.28 58.64
1944 61.48 58.65
400m Freestyle 1916 324.00 332.24 314.88

1920 319.71 332.24 314.88
1940 287.81 291.31

* 1944 282.20 289.64
1500m Freestyle * 1916 1335.42 1358.13 1361.20
1940 1182.37 1183.13
* 1944 1158.08 1200.24

* predicted mean outside of range of prior and succeeding means.
Table 5

Predicted Means (Using all data) for Women's Events not Contested at Various
Occasions. Time is Recorded in Seconds.

Event Year Predicted Previous Subsequent
Mean Mean Mean
Women’s 100m Freestyle 1916 81.16 85.88 77.65
* 1940 70.12 67.39
1944 68.57 67.90
400m Freestyle 1940 330.71 335.55
* 1944 322.54 325.56

* Predicted mean outside of range of prior and succeeding means.

The method of substituting the geometric mean as used by Stefani [21], when
omitting the data from 1968 due to the altitude of the host city, assumes that the
times of the finalists will continue to improve from Olympiad to Olympiad. An
inspection of the actual results indicates that this is not always the trend of
improvement. The mean of the finalists in some events actually regresses before
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improving. While Stefani [21] implies continuing improvement, the method used in
this study allows for fluctuations in the actual mean times. This is reflected in the
predicted means for the events marked with an asterix in Tables 4 and 5.

Jokl and Jokl [9] stated that in some athletic events the ultimate in performance
appears to have been reached, but that in swimming events the prediction of
ultimate performance is still not possible as the performance curves are still showing
an improvement trend. This concurs with the trends shown in the current study.

In some cases the predictive models were able to be improved through the omission
of, or adjustment to, certain data. The data that was omitted was that which is
suspected to include the results of swimmers who had used performance-enhancing
substances. This issue, and that of the adjustment of some data to address the issue
of hand-timing is discussed in later sections.

Hypothesis 2

Hypothesis 2 stated that more variance will be explained through the use of non-
linear models, therefore reducing the amount of error variance. The results of this
study indicate that this hypothesis was supported in full.

In the present study, using all data, the linear models were the least accurate in all
but four events (50m Freestyle for both men and women, Men’s 1500m Freestyle and
Women's 400m Freestyle). The highest coefficient of determination for these events
was, in all cases, derived from a non-linear model.

The coefficients of determination for these events are, when looking at the least
accurate model, in general, lower than those in Edwards and Hopkins [4] study,
where the coefficients of determination where between 0.956 and 0.991. The study by
Edwards and Hopkins [4] investigated the world record in only men’s running
events and as such did not include a large amount of data as used in the present
study. Therefore, the trends of the Edwards and Hopkins study may not be totally
representative of the changes in overall performance in running events and may be
dissimilar to the trends of elite swimming performance as determined in the present
study.

The concept of non-linear models and an asymptote of human performance was
discussed by Jokl and Jokl [7], [8] and Telford [22]. Where a linear model is used it is
expected that improvements occur at a steady rate and is entirely impossible to
predict a point where the ultimate performance has been reached, as according to a
linear model there is always the possibility of improvement. Telford ([22], p.2) noted
that while “the asymptote of human performance is ever approached, it is never
achieved”. This is not to say that performances will improve at a steady rate, which
is indicated by linear modeling, rather that performances will improve but according
to the Principle of Diminishing Returns (Fowler [23]). This Principle indicates that
improvements in performance will become smaller and more difficult to achieve as
time progresses. This is apparent in the changes of world records which are being
broken less regularly and by smaller amounts.
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The Principle of Diminishing Returns is also discussed by Chatterjee and Laudato [24]
who concluded in their study of World Record times that the rate of improvement
for men is decreasing and this rate for women is increasing. This itself indicates a
non-linear nature in performance curves. A linear trend would indicate that the rate
of improvement remains constant over time. Such a rate of improvement would be
represented on a time/date chart by the gradient of the line that shows the rate
changes over time.

Hypothesis 3

The hypothesis that, the effects of steroids and other performance enhancing
substances will be seen to a greater degree in the womens’ results and correction for
this will allow better predictions, was tested by removing the data from the years
1976 to 1992. These years were removed due to suspicions of drug use in swimming.
Of the ten individual events contested in 1996 only five were able to be compared
after the exclusion of the data from 1976 to 1992. Exclusion of events was due to
those events being contested only twice in the time-frame considered as all of the
models used are able to fit a line between two points with 100% accuracy, as indeed,
is any model.

The hypothesis of greater accuracy was refuted for all events with the exception of
the Men’s 100m Freestyle. The predictions for all other events were considerably
faster than the actual result when made using the data up to 1972. The comparisons
of predictions and actual performances are shown in Table 6 Comparisons of
Predictions Made Using All Data and ‘Steroid Free’ Data With Actual Performances
in 1996.

Table 6

Comparisons of Predictions Made Using All Data and ‘Steroid Free’ Data With
Actual Performances in 1996

Event All data Steroid Free  Actual

Men’s 100m Freestyle  48.28 *49.40 49.31
400m Freestyle 218.54 213.81 230.57
1500m Freestyle 854.92 851.66 910.29

Women’s 100m Freestyle 54.62 52.62 55.37
400m Freestyle 231.33 229.05 250.00

* All time recorded in seconds.

It was expected that removing the data from the years of steroid usage would have
had the opposite effect to what is apparent in the data. That is, that the predictions of
1996 performances would have been more accurate with the years of known steroid
use eliminated. Due to the greater effects of steroids when used by females it was
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expected that the 1996 predictions for female events would have been greatly
improved, given that it is acknowledged that the results from 1976 to 1988 were
confounded by drug use by female East German swimmers (Helmsteadt [13], [14];
Verroken & Mottram [25]; Whitten [26], [27]). The 1992 results were similarly
affected by drug use of Chinese female swimmers (Whitten [26], [27]). An
assumption made when postulating this hypothesis was that the use of steroids and
other pharmacological agents was not a factor at the 1996 Olympic Games. This
assumption may have been false given that at least one finalist tested positive at the
Atlanta Olympic Games and at least one other swimmer involved in a number of
finals has been accused of drug use in the lead up to these Olympic Games (ESPNET
[28]; Masters [29]). In the light of this, it is apparent that the use of steroids and other
performance-enhancing substances has not been excluded from swimming events
and may in fact be more widespread than is acknowledged. Given that former
Eastern bloc countries tested their swimmers prior to competition and that a number
of Chinese swimmers have been banned from elite swimming due to the use of
performance-enhancing substances, it is entirely possible that swimming is still
affected by the use of drugs. If this is the case then the models excluding the years
1976 to 1992 would not provide more accurate predictions as the trends during these
years which include the use of drugs may become necessary parts of the models. The
changes in performance may not only be due to the reasons stated by Dyer [19] such
as improved technique, better facilities, larger pool of competitors and genetic
changes, but also to the development of methods of chemical manipulation to
enhance performance (The Parliament of the Government of Australia [30]).

By excluding the years 1976 to 1992 a large amount of data was ignored leaving a
number of events with very few data points to use in the regression models. This in
itself would affect the accuracy of the models. The inclusion of the greatest amount
of data possible is necessary to generate the most suitable models.

Another factor to which the difference between the predictions with all data
compared to the ‘steroid free’ data may be attributed to the effects of steroids in
swimming. If steroids were to have no real effect on a swimmer’s performance, such
as in the distance events, then the inclusion of all data would be expected to provide
the more accurate predictions as was the case for most of the events.

The blanket approach of ignoring all data from 1976 to 1992, in an attempt to
determine the effects of steroid and other performance enhancing substance use in
swimming may have been inappropriate. An approach such as this necessitates
ignoring numerous other factors that may have been causal in the improvement of
swimming times. These factors include, but are not limited to, improved training
techniques, better coach education, greater rewards for elite performance and larger

number of competitors involved in elite swimming (Australian Sports Commission
[2]; Dyer [19)).

It is however impossible to remove the results of only those swimmers who are
known to have used performance-enhancing substances. While it is acknowledged
that a number of swimmers from East Germany were involved in a drug program,
there remains some doubt as to whether swimmers from other countries also
attained the status of Olympic finalist with the assistance of such substances (The
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Parliament of the Government of Australia [30]). It was not within the scope of this
study to discriminate between ‘clean” swimmers and those who used drugs, hence
the total removal of the suspect years in this aspect of the study.

There are four possible explanations for the non-confirmation of the hypothesis, that
removing the years 1976 to 1992 would provide more accurate predictions of 1996
performance. These are explanations are:

1. Steroids may still be in use in elite swimming.
2. Steroids may not have positive effects in elite swimming.

3. Not enough data was able to be included in the calculation of the regression
models.

4. The omission of the years 1976 to 1992 to counter the effect of steroids on elite
swimming performance levels also removed the effect of a number of other
factors.

Further investigation into the use of performance enhancing substances in swimming
is therefore required. FINA, the International Olympic Committee and Australian
Olympic Committee have acknowledged that steroids and other drugs are still in use
in elite swimming and many other sports and are running an out-of-competition
drug-testing program in order to combat the situation (The Parliament of the
Commonwealth of Australia [31]; Verroken & Mottram [25]).

Ethical issues that arise in the area of testing for steroids in humans arise from
explanation point two, that is the actual effects that steroids and other substances
have upon human performance. This is due to the fact that whilst medicinal doses of
androgenic-anabolic steroids are known to have adverse effects on the liver and
other structures of the body, athletes have reported using up to 1000 times the
normally prescribed dose of a steroid (The Parliament of the Commonwealth of
Australia [31]; Wadler & Hainline [32]).

By using more data, possibly from world rankings lists, the problem of lack of data
may be overcome. World Championships for swimming, which are contested every
four years, began in 1973, and so, all but one World Championship fall into the
period of time that is in question (1976 onwards). The use of world rankings from
the years prior to 1976 is possible, however this data is not of the same source as the
rest of the data. World rankings lists are composed of all data from competitions
from each year. It is entirely possible that the best swimmers were not competing
against each other at all meets. While the pools are standardised, the data for one
event may come from any number of competitions with different rewards for
successful performance and differing qualifying criteria and as a result the data is not
collected in the same environment.

Hypothesis 4

Hand-timing in sporting competitions is acknowledged to be a source of error.
When hand-timing is used the reaction time to the starting signal by each timekeeper
may differ. In addition, the recorded time will be slightly faster than the actual time
due to this reaction. Automatic timing, which is initiated by the starting signal and
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stops as the swimmer touches the wall, may give a slightly slower time, as no human
reaction for the timekeeper is involved in this process. The time given by an
automatic timing system is the total time from the starting signal to completion of the
event with no extraneous error. At the 1964 Olympic Games automatic timing was
introduced and thus this source of error was removed.

Hypothesis 4 states that, corrections for hand-timing prior to 1964 will not greatly
improve the fit of the models. The models derived, after incorporating a correction
factor of 0.24 seconds, did not improve the fit of the models for many events. In fact
there was no major change in either direction for any event. Only the model for the
100m Freestyle for both men and women was improved with the addition of this
factor. The improvement in coefficient of determination, which was the largest
change, for the Men’s 100m Freestyle was from 0.858 to 0.976 and for the Women's
100m Freestyle 0.955 to 0.956. The improvement in time for the Men’s 100m
Freestyle was 0.37 seconds and for the Women’s 100m Freestyle 0.45 seconds. These
changes are much larger than for all other events.

Due to the outcome that the correction factor is relatively minimal compared to the
duration of the events, for example, in 1996 49.31 seconds for Men’s 100m Freestyle
to 910.29 seconds for the 1500m Freestyle, it was expected that this correction would
not have a large impact on the models. The correction factor is 0.49% of the Men’s
100m Freestyle mean and 0.03% of the 1500m Freestyle mean in 1996.

For most of the events that were able to be included in the hand-timing corrected
data the model of best fit did not change. Changes in the models were seen for the
Men’s 100m Freestyle. The 100m Freestyle model changed from a Sigmoidal model
(R = .858) using the data to 1992 to a Compound model (R* = .969) with the
incorporation of the hand-timing correction. This appears to be the only major
change in the models of best fit. It must however be noted that the Sigmoidal model
in the corrected data set also has a coefficient of determination of .969. The difference
is only seen at the fourth decimal place.

Based on these findings, Hypothesis 4 was therefore supported.
Hypothesis 5

The type of model for the Men’s Freestyle events changed as the event duration
increased. The 100m and 200m events were described by Sigmoid models and both
the 400m and 1500m events were described by cubic models.

For the women’s Freestyle events the model again changed as the distance swum
increased. The 100m Freestyle was described by a cubic model, the 200m and 800m
by s models and the 400m Freestyle by an inverse model.

An apparent anomaly, in this situation a point where the predicted times become
progressively slower, occurs when a cubic model is used to describe events.
According to the data up to 1992 this point does not occur in the men’s 400m and
1500m Freestyle before the year 2100. Nevertheless, a turn-around point at 2106 is
found for the women’s 100m Freestyle. Such anomalies are due to the nature of the
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cubic model which has an minimum value at the vertex of the curve. At this point
the times are to predicted to in fact, decrease in the future.

The fact that the model changed as the duration of the Freestyle events increased, for
both men and women, may be a reflection on the differing energy systems that
dominate each event. For example, the 50m Freestyle events last less than 30 seconds
and are performed utilising energy primarily derived from the anaerobic system,
whereas the 400m, 800m and 1500m Freestyle events last between 3:40 and 15:30 and
therefore rely predominantly on the aerobic energy system.

Most swimming events are longer than one minute in duration and a number of
researchers (Astrand & Rodahl [33]; Brookes & Fahey [34]; Brookes, Fahey & White
[35]; Fox & Mathews [36]) have noted that aerobic glycolysis becomes a more
important source of ATP for muscle contraction as the duration of the event
increases. With this in mind, the fact that a number of events are described by
similar models becomes reasonable.

In those cases where the same model described two or more events, the curve of best
fit itself differed in the constants and coefficients that produce the curve. In this way
no two events were described by exactly the same curve of best fit.

Hypothesis 6

Hypothesis 6, that the models will also be gender specific, was also partially
supported. No single model was able to fit any or all events perfectly, that is R* =
1.00. Again, where two or more events were represented by the same model, the
coefficients and constants of the lines of best fit differed between events.

The final regression equations for a number of events were of the same type for both
genders. The 50m Freestyle were both inverse functions, the 200m Freestyle events
were best represented by Sigmoidal curves and the 400m Freestyle events by cubic
curves. For the remaining events the model differed between genders.

Each regression equation was specific to the event and gender. Where one model
described two or more events, the constants and coefficients that determine the lines
of best fit cause the actual lines describing each event to differ.

The physiological differences between genders as noted by Wells and Plowman [37],
O’Brien, Davies and Daggett [38], and Brukner and Khan [39] also helps to explain
the differences in the lines derived for each gender in each event. These differences
mean that each gender must perform each event in slightly different manners,
utilising different muscle masses and distributions to move different body shapes
through the water.

The similarities between the curves of best fit for each gender in a number of events
can be seen in the Figures 1 to 10. There are many differences between the genders in
terms of physiology (Carbon [40]; O’Brien et al. [38]; Rushall & Pyke [41]; Wells &
Plowman [37]).
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That the performance of both genders were able to be described by the same model
for a number of events indicates that similar trends have occurred for both genders
in these events. This may also indicate that there is a common construct or constructs
underlying performance in both genders, as despite their physiological differences
males and females are showing similar adaptations to training. The differences in
swimming performance are, according to Kennedy, Brown, Chengalur and Nelson
[42], and Arellano, Brown, Cappaert and Nelson [43], due to males having a greater
stature and using this to develop longer stroke lengths.

A sigmoid model was by far the most common across both genders, in all events.
This would seem to indicate that similar adaptations, by both genders in these
events, to the new training techniques that have been implemented. This is in
concurrence with the conclusions made by Chatterjee and Laudato [24] that overall
improvements in performance, when represented graphically, depict an Sigmoidal-
shaped curve. This shape of this curve is due to early variations in performance,
rapid improvements and then followed by ever-decreasing improvements as the
‘ultimate performance’ is neared.

Table 7

Events Represented by the Same Model for Both Genders.

Event Model

50m Freestyle  Inverse
200m Freestyle Sigmoidal
400m Freestyle Cubic

This does not however explain the differences, between the genders, in the form of
line for the 100m Freestyle. A compound and a cubic model were used, respectively,
to describe the 100m Freestyle for men and women. Given the similar energy
demands for each gender in each event, these results appear to be an aberration. As
the models this event are drawn from the same data set for each gender, in all cases
the hand-timing set, this difference becomes hard to explain. Differences in the
amount of data used may account for this. For example, the Men’s 100m Freestyle
has been contested since 1896 (data from 1908 onwards used) and the Women’s 100m
Freestyle was first contested in 1912. However, such differences in the amount of
available data did not cause the same effect in other swimming events.

The models used to describe the trends in these two events were chosen after
comparison of the coefficients of determination (R’). For these events the coefficients
of determination of a number of models were the same to the third decimal place and
the particular model chosen from the fourth decimal place. At three decimal places
the compound model for the Men’s 100m Freestyle is no better than any other model
with the exception of the linear and quadratic models. The cubic model for the
Women’s 100m Freestyle was the most superior in all respects. Therefore, it is
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possible that the performances of both genders could be adequately described
through the use of the same form of line.

If these changes to the models used were adopted both genders in each event would
then be described by the same form of line and so the changes in performance within
each event would be following similar trends.

Both 50m Freestyle events were described by inverse lines. The coefficients of
determination for these events were both low (.543 for men and .732 for women).
These events have only been contested at the past three Olympiads and perhaps as
more data becomes available in the future these events may be able to be described
by more accurate models.

Chatterjee and Laudato [24] concluded that the curve for the improvement within
any one event would be Sigmoid-shaped. In three events analysed in this study, the
curve of improvement is Sigmoid-shaped. For the two events represented by inverse
curves, both 50m Freestyle events, there was not a large amount of data available for
the analysis. With the collection of more data in these particular events, it may be
possible that a Sigmoidal curve will be suited to the 50m Freestyle. The overall
finding of non-linearity is in contrast with Edwards and Hopkins [4], who found a
high degree of linearity for the progression of the World Record in a number of
athletic events. The authors did acknowledge that it was expected that lines of
improvement would be curvilinear in nature. Edwards and Hopkins [4] however,
did not attempt to fit any non-linear models to the data used. It must also be noted
that the Edwards and Hopkins [4] study involved World athletic records and the
current study was used to investigate the changes in performance over time of the
means of the Olympic finalists in swimming events.

Hypothesis 7

Hypothesis 7 stated that the use of non-linear models will result in less absurd
predictions such as those of a zero time. An absurd prediction might also be one for
the 2000 Olympic Games that is far in excess of current (1996) performances.

For all events, with the exception of the 50m Freestyle for both Men and Women, it
was not possible to predict a zero time. The 50m Freestyle events were both
described by an inverse line and a zero time was predicted for the year 2994 for men
and in 2700 for women (refer to Table 4.33). These two events have only been
contested at the past three Olympic Games and thus a large amount of data
regarding the 50m Freestyle has not been collected at this stage. With such a small
amount of data it is not possible to accurately analyse the long term trends in
performance. In addition, the coefficients of determination for theses events (men
0.543; women 0.732) must be recognised. Low coefficients of determination result in
less accurate predictive models. The mean performance of finalists for both men and
women in 1996 in the 50m Freestyle were slightly slower than in 1992. Without
further data to include in the models, it may be thought that ultimate performances
in these events may have been reached. The predicted years of zero time are well in
advance of the present year and with more data it is entirely possible that the models
for each event will change and future models in addition to being more
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representative of the changes in performance, that is the models will have higher
coefficients of determination, may not allow such predictions.

It must be noted that the models derived are part of an evolving process and that as
new data becomes available after each Olympiad this data should be included in the
data set before new regressions equations are derived. In this manner the new
models may be entirely different.

The predictions of zero time in athletic events by Edwards and Hopkins [4] using
linear models ranged from 2228 to 2893. Predictions of zero time were made in all
events. In the present study the predictions of zero time were much further into the
future than for Edwards and Hopkins [4] study.

SUMMARY OF THE DISCUSSION

The changes in swimming performance at the Olympic Games are evident. Previous
research of this type has primarily investigated changes in World Record
performances. The mean of the finalists at the Olympic Games has been used in this
study as it is believed that this would be more representative of overall changes in
swimming performance. The best swimmers in the world compete against each
other at the Olympic Games, under the same conditions, in an effort to be recognised
as the best swimmer in the world.

Mathematical modeling has previously been used to predict sporting performance.
However this is often based on linear regression. This study has shown that the use
of non-linear models, when predicting future sporting performance, is more
appropriate than the use of linear models. For every event considered, a non-linear
model had a higher coefficient of determination, greater level of significance and
smaller residuals than the linear model for the same event. The use of non-linear
models also resulted in less absurd predictions being made. The 50m Freestyle
events were the only events where a prediction of zero time was able to be made.

The use of steroids and other performance enhancing substances in swimming in
previous years (1976 to 1992) is acknowledged. The removal of those years from the
data set with the intention of deriving more accurate predictions was not successful.
Only three events were predicted with greater accuracy with the years 1976 to 1992
removed from the data set. This may be a reflection of the lack efficacy of such drugs
in swimming performance or perhaps be an indication that drugs are still being used
by elite swimmers however the actual extent of this use of drugs is not detected by
current drug testing protocols.

The correction for hand-timing, as expected, did not have a large impact on the fit of
the models. The models for 100m Freestyle events for both men and women were
improved only slightly with this correction. As these are the shortest events that
could be analysed in this section this is an expected outcome.

It has been shown that a particular line was derived for each event. The models of
each line however were remarkably similar with the majority of events predicted
using a sigmoid line.
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Finally, it was also shown that the mean performance of the finalists in each
swimming event at the Olympic Games is expected to continue to improve in the
near future.

CONCLUSIONS

While it is apparent that the times of Olympic finalists have, in general, been
improving the manner of this improvement has not previously been investigated.
Previous investigations have assumed that these improvements are linear in nature
and that linear models sufficiently fit the available data.

The findings of this research has resulted in a number of conclusions and these are:

1. The results of this study indicate that the use of non-linear models in the analysis
of phylogenetic trends in human performance is more appropriate than linear
modeling.

2. In each event studied and in all aspects investigated a non-linear model generated
the line of best fit.

3. From the regression equations generated it was possible to predict levels of future
performance.

4. The predictions made as a result of this study may then be used by swim coaches,
officials and swimmers to set training programs, training and competition goals
and selection standards for future teams.

This research was not intended to reduce elite sporting performance to a series of
mathematical functions, but rather to determine whether such functions can be used
to extrapolate future levels of performance. It has been shown that mathematical
models are able to be used for the purpose of extrapolating future results in addition
to interpolation for those events which were not contested at one point in the past for
any particular reason.

The regression equations may be useful for coaches and swimmers in determining
the level of performance required at future competitions. Banister and Calvert [1]
have identified this important issue that knowledge of future performance levels are
essential in the development of training programs and the setting of goals for
swimmers.

It has also been shown that the use of non-linear modeling techniques are more
appropriate than the linear models as derived previously by Edwards and Hopkins
[4]. By using the means of Olympic finalists it has also been possible to investigate
the changes in performance at a greater depth. Edwards and Hopkins [4], Jokl and
Jokl [9] and Prendergast [44] used world record performances in the predictions of
future performance. As a World Record is a superlative performance, changes in this
are not a true reflection on overall changes in performance.

Whether the trends at the Olympic Games for swimming over the past
approximately 90 years (1908 to 1996) are representative of the phylogenetic changes
in humans, such as physique of swimmers, or environmental changes, such as
training, drugs in sport, sport, increased participation in swimming and physique of
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swimmers (this construct can be changed by training as well as being genetic
control), is at this point in time have been partially answered by this study. The
development of each stroke into its current form, changes in training techniques and
increased rewards and number of competitors have been identified as possible causal
factors that improve swimming performance.

Carter [45], [46] has noted changes in the physical structure of Olympians.
Competitors at the Olympic Games have been becoming taller and more muscular.
Again, it is not known if these changes are entirely due to phylogenetic changes or to
the auto-selection of athletes who have body types that are better suited to particular
events. It is also possible that the structure of Olympic athletes is changing as a
result of the development of new training techniques. Counsilman [47] has stated a
belief that performances are improving as a result of new training methods, that is
manipulation of environmental factors.

It has been shown in this study that performances have been improving and should
continue to do so in the near future. Many events have displayed similar trends, in
terms of the regression models that best fit the data, thus indicating that there may be
an underlying construct of performance that is changing.
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THE AFL FINALS: IT’S MORE THAN A GAME

George A. Christos'

Abstract

The McIntyre system, which is currently used in the AFL finals, is inconsistent,
uncompetitive and offers the top two or three teams in the final-eight too much advantage
to win the premiership flag. If one takes into account home-ground advantage and
the form of the teams over the season, one would conclude that the top two teams
each have of the order of a 30% chance, or more, to win the premiership, while the
teams finishing in seventh and eighth position only have around a 1% chance, or
less, of winning the premiership. We believe that this differential is far too great
to generate public interest in the finals series, especially since the top teams
play the bottom teams in round one in the McIntyre system.

We have considered various other finals systems which progressively aim to correct
the imbalance towards the top end teams, and make the matches much closer and
more interesting. Some of these systems use a specific rule, while others involve an
element of chance in that a draw is conducted to see which teams, under certain
constraints, actually get to play each other in each of the finals. In all of these new
systems, there are 10 finals matches, compared to 9 in the McIntyre system. This
should offer the AFL an additional incentive to improving the finals system.

1. THE MCINTYRE SYSTEM

The AFL uses the McIntyre system for the finals matches. The top 8 teams from
the home-and-away series of matches take part in the finals. In the first round in
the McIntyre system, the team on top of the ladder plays the team in eighth
position, the team in second position plays the team in seventh position, the third
team plays the sixth team, and the fourth team plays the fifth team, as illustrated
in Figure 1 below. The matches are played at the home-grounds of the top 4
teams.

Al
A2
A3
A4
A5
A6 —
A7 ————
A8

Figure 1: The first round matches in the McIntyre system, for the final-eight
teams in specific order Al(top) to A8(bottom). Connected teams play
each other at the home-ground of the higher ranked team.
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The teams are then ordered with the 4 winners, keeping the same relative order
as in the final 8, followed by the 4 losers also in the same relative order as in the
final 8. The 2 lowest ranked losers are eliminated from the competition. As an
example, let us suppose that the 4 winners from round one (r1) are teams Al, A3,
A5, and A7, then the 6 teams that proceed to round two (r2) are ordered as
follows:

Al -bye
A3 -bye
A5

A7r—1

A2

A4——

Figure 2: An example of the 6 remaining teams in the finals after r1, also showing
how these teams are matched to play in r2 in the McIntyre system.

In this example, teams A6 and A8 were eliminated after rl, as they were the 2
lowest ranked losers. The top 2 teams, here A1 and A3, do not play in r2, while
the other 4 teams play as indicated above, A5 plays A2, and A7 plays A4, at the
home-grounds of A5 and A7 respectively. The McIntyre system is flawed or
inconsistent here, since it is unfair that a lower ranked team A4 gets to play a
weaker opponent (A7) than A2, who must play A5, even though A2 is ranked
above A4. Notice also that, in this example, A4 did not win in rl to earn this
privilege. By the same token, A5 also undeservedly gets a much tougher
assignment than A7. The reason that this particular choice of matches is made in
the McIntyre system is clear since otherwise, if A5 plays A4, and A7 plays A2,
one would have the same matches as in rl. The 2 losers from the r2 matches are
eliminated, leaving 4 teams, the 2 winners and the 2 teams that had a bye in r2, in
this example Al and A3. For illustration purposes let us suppose that A5 and A4
win in r2. In this case the 4 remaining teams are then ranked in the order shown
in Figure 3.

Al ——
A3
A5
A4 —

Figure 3: The r3 matches in the McIntyre system for the example considered.

In round three (r3), or what are also called the preliminary finals, the teams play
each other as indicated above, in this example, Al plays A4, and A3 plays AS.
The 2 winners proceed to the Grand Final.

2. THE RAW “PREMIERSHIP PROBABILITIES’ IN THE MCINTYRE SYSTEM:ASSUMING
EVERY GAME IS A EVEN CHANCE FOR BOTH TEAMS

It is a simple matter to calculate the probability that any team in the final 8 will
go on to win the premiership flag from their position in the final 8, under the
assumption that every game is even, or 50:50 for each team to win. Consider for
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example the team finishing in third position A3. Out of the 16=2x2x2x2 possible
outcomes to the 4 matches in r1, A3 will finish in a top 2 position on 6 occasions,
in a bottom 4 position on 8 occasions, and is eliminated on 2 occasions (when Al
and A2 also lose). From a top 2 position in 12, A3 needs to win 2 more games to
win the premiership (probability 1/4) and from a bottom 4 position, A3 needs to
win 3 games to win the premiership (probability 1/8). Therefore the probability
that A3 wins the premiership is equal to - 4+ % % = %,=015625=15.625%. In
a similar way one can calculate the premiership probabilities for all of the other
teams in the finals competition, which are given in Figure 4.

Final 8 raw premiership probability
Al 18.75%
A2 18.75%
A3 15.625%
A4 12.5%
A5 12.5%
A6 9.375%
A7 6.25%
A8 6.25%

Figure 4: The raw premiership probabilities that each of the teams in the final 8
will win the premiership flag assuming that every match is an even
chance for either team to win.

Another fault of the McIntyre system is that the top 2 teams have the same
premiership probabilities, so there is no incentive to finish on top of the ladder
(minor premiers) after the home and away series. The McIntyre system also
treats A7 and A8 equally and also makes no real distinction between 2 pairs of
teams playing in r2, in our example between A5 and A7, and between A2 and A4.

113

3. THE ‘DRESSED’ PREMIERSHIP PROBABILITIES IN THE MCINTYRE SYSTEM: TAKING

FORM AND HOME-GROUND ADVANTAGE INTO ACCOUNT

If one disregards the inconsistencies in the McIntyre system mentioned above,
the raw premiership probabilities in Figure 4 look quite reasonable, but they do
not take into account

¢ the form of the teams that are playing each other.

o the fact that the top teams generally get to play the weakest teams, for
example, in r1, Al plays A8, and A2 plays A7.

e the home-ground advantage to the top teams.

e the fact that 2 of the top teams get a week off in r2. This gives them an
advantage since their players have more time to recuperate from injuries.

We have performed calculations which take into account the first three of these
factors, as detailed below. The probabilities calculated in this way are referred to
as ‘dressed’ probabilities, in comparison to the ‘raw’ probabilities calculated in
Section 2, where every match was considered to be an even chance for both teams
playing. These calculated dressed premiership probabilities are given in Figure 5.
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To illustrate our technique consider the first round match between the teams that
finished first and eighth on the ladder last year (1997) after the home and away
games, that is St Kilda and Brisbane respectively. St Kilda won 15 games out of
22, while Brisbane won 10 games and drew one game out of 22. Therefore the
probability that St Kilda wins in general (or its ‘win-match ratio’) is
15/22=0.6818, and the probability that it loses is 7/22=0.3182=1-0.6818.
Brisbane has a probability of 10.5/22=0.4773 to win and a probability of 0.5227 to
lose. The probability that St Kilda would win against Brisbane is therefore
proportional to (0.6818)(0.5227) =~0.3564, and the probability that Brisbane would
win against St Kilda is proportional to (0.4773)(0.3182) =0.1519. These factors
need to be normalized so that either one of these outcomes occurs with
probability one, ignoring the possibility of a draw. This means that the
probability that St Kilda wins is equal to 0.3564/(0.3564+0.1519) =0.7012, and the
probability that Brisbane wins is equal to 0.1519/(0.3564+0.1519) =0.2988. In our
calculations we have generally made an allowance for the home-ground
advantage by shifting these probabilities by 0.1, or 10% from the team playing
away to the team playing at home. In some cases where there was no clear home-
ground advantage no adjustment was made, while in other cases smaller
adjustments were made. We believe that our modelling of home-ground
advantage is quite conservative. One could perform more detailed calculations
in this regard by looking at each team’s specific record in the home and away
games, in much more detail. If one uses a simple shift in probabilities then the
probability that St Kilda would win is equal to 0.8012 =80% and the probability
that Brisbane would win is equal to 0.1988 =20%.

Using the win-match ratios for the 8 finalists in 1997 (SK 15/22, G 15/22, WB
14/22, A 13/22, WC 13/22,S 12/22, NM 12/22, B 10.5/22) one can calculate the
probabilities for the outcomes to each of the other rl matches and from this
deduce the probability for each of the 16 possible outcomes to the 4 r1 matches,
which now do not occur with equal probability 1/16, as in the undressed
situation.

For each of the 16 possible outcomes to the rl matches there are 4=2x2 possible
outcomes to the two r2 matches. One can calculate the probabilities for each of
these r2 outcomes to occur, using the updated win-match ratios for the
competing teams. Each r2 outcome leads to a different set of r3 matches which in
turn each have a further 4 possible outcomes with an associated probability.
Finally one can calculate the probability that either one of the two remaining

teams wins the Grand Final. In essence, there are 512=16x4x4x2 =29 (9 finals
matches in all) different possible scenarios that can arise, which we have
examined in deriving the results given in Figure 5. Each of these 512 possible
outcomes has an associated probability of occurrence, which is given by the
product of all of the associated r1, r2, r3, and Grand Final probabilities that lead
to this result. The probability that some team, say Adelaide, goes on to win the
flag is given by summing all of those associated probabilities, out of the 512
possible cases, where Adelaide wins the Grand Final.
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Final 8 (1997) dressed premiership probabilities
SK ~30%
Geel ~18%
WB ~17%
Adel ~14%
WC ~7%
Syd ~5%
NM ~8%
Bris ~1%

Figure 5: The dressed premiership probabilities, in the Mclntyre system, for
each of the teams in the 1997 AFL final 8 in the McIntyre system.
Results from a detailed calculation sifting through all 512 possible
match scenarios by hand.

It is clear from these results that the top few teams have a much higher
premiership probability, and the bottom few teams have a much lower
premiership probability, than calculated previously, where form and home-
ground advantage were completely ignored. We regard this as the most serious
fault of the McIntyre system. Note that, in these calculations Geelong’s
premiership probability was adversely affected by the fact that they had to play
North Melbourne at the MCG, North Melbourne’s home-ground, in rl. If for
example, a non-Victorian team had finished in seventh position, then Geelong’s
premiership probability would have also been around 30% like St Kilda, and that
team in seventh position would have had a premiership probability of around 1%
like Brisbane. We believe that the McIntyre system offers far too much advantage
to the top few teams in the final 8 to win the premiership flag. The problem
arises because the top teams generally get to play the weakest teams, and
generally get to play at their home ground. In addition, as we noted earlier, we
have not taken into account the fact that two of the top teams do not have to play
in r2.

It is also important to note that last year (1997) the AFL competition was
regarded as one of the closest ever, so our results in Figure 5 would be further
exaggerated if the competition was dominated by one or two teams, as is usually
the case. In these circumstances the premiership probabilities for the top teams
may be closer to 40% and the premiership probabilities of the bottom two teams
may be much less than 1%.

We have investigated a number of other finals systems, which progressively aim
to improve the prospects for the teams at the lower end of the final eight. Some
of the systems that we have considered use a specific rule (or deterministic)
algorithm, while others involve an element of chance, or randomness, to see who
plays who under certain constraints.

4, THE OUTER PAIRING SYSTEM 010203

In a deterministic system, that is, a system where there is a specific rule about
who plays who, it is important that when the teams are paired to play each other,
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that none of the lines, which join together these teams, cross each other, or
otherwise a lower ranked team is necessarily given an easier task than a team
which is ranked above it. This was observed in 12 of the McIntyre system, see
Figure 2. To ensure ‘fairness’ in the fixtures, it is essential that these lines are in a
concentric, or nested formation. The fairest arrangement of matches in rl is as
shown in Figure 1, as used in the McIntyre system. In the 010903 outer pairing

system this principle of nested outer pairing is applied in r1, 12, and 13 (hence the
notation), as depicted in Figure 6. The r1 matches are the same as in the McIntyre
system. The 2 lowest losers from rl are eliminated, leaving 6 teams in relative
order to compete in r2. The difference with the McIntyre system comes about in
r2, where now all 6 teams participate. The top 3 teams play the bottom 3 teams at
their home grounds, and the 2 lowest losers are eliminated. In r3, the top 2 teams
play the bottom 2 teams, and the 2 winners proceed to the Grand Final.

Al

A2 Bl

A3 — B2 — Cl—

A4 B3 C2 GF
A5 — B4 — C3 '

A6 — B5S — C4—-

A7 B6

A8

Figure 6: The rl r2 and r3 matches in the 0710503 system.

Using similar techniques as before, the raw premiership probabilities for the
teams in the final 8 can be calculated. The results are given in Figure 7. As an
example consider the team which finished in second position. A2 has a
probability of 4/16=1/4 that it will finish top of the 6 after rl, a probability of
4/16=1/4 that it will finish in second position, a probability of 4/16=1/4 that it
will finish in fifth position, and a probability of 4/16=1/4 that it will finish in
sixth position. An analysis of the 8 possible outcomes to the r2 matches reveals
that from these positions the probability that A2 will proceed to r3 is equal to 1,
6/8=3/4, 4/8=1/2, and 4/8=1/2 respectively. Multiplying the corresponding
probabilities together and summing over all of the possible outcomes gives the
probability that A2 will make it to 3. This probability is given in curly brackets
below. From 13 there is a further probability of 1/4 that A2 will win the
premiership, 2 more games, so the overall premiership probability for A2 is equal
to {%-1+%-%+%~V2 +%-%}~%,= Y%4=17.19%. Similarly one can calculate the
premiership probabilities for each of the other teams in the final eight (Christos
[1]), which are given in Figure 7.
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Final 8 raw premiership probability
Al 18.75%
A2 17.19%
A3 14.45%
A4 12.11%
A5 12.11%
Ab 9.77%
A7 7.81%
A8 7.81%

Figure 7: The raw premiership probabilities for each team in the final 8 in the
010203 outer pairing system.

One can see from these results, that in the 070203 system, Al and A2 do not
have the same raw premiership probabilities, as in the McIntyre system. The
teams that finish seventh and eighth on the ladder also have a slightly higher raw
probability to win the premiership than in the McIntyre system, but this increase
is really quite small. Also in the 010203 system there are no logical flaws, as
were found in 12 of the McIntyre system, where the team in sixth position had an
easier match than the team above it in fifth position. Another good feature of the
010203 system is that the top 2 teams after r1 must also play in r2, and the
bottom 4 teams in r2 do not have the same probabilities to proceed to the next
round, as in the McIntyre system. This also means that there is an extra game
played in the finals in the 010203 system, here 10, compared to 9 in the McIntyre
system.

The 010203 system has certain advantages over the McIntyre system as we have
noted above, but one may still argue that it does not go far enough in improving
the prospects for the bottom end teams to win the premiership flag since in the
010203 system the top teams still play the weakest teams, in rl and also in 12,
and also enjoy a home-ground advantage.

A complete listing of all possible outcomes for the 010,03 system reveals that
there is a 1 in 8 chance that 2 teams that played each other in r1 will have to play
each other again in r3. A similar listing for the McIntyre system reveals another
interesting fact, which is, that it is impossible in the McIntyre system to have a
Grand Final between Al and A7 or between A2 and A8. In the context of last
years finalists this means that a Grand Final between St. Kilda and North
Melbourne, or between Geelong and Brisbane was impossible in the McIntyre
system. This may be considered as yet another fault of the McIntyre system.
There are no such unallowed possibilities in the 010203 system.

5. THE RANDOM PAIRING SYSTEM R1R2R3

Another ‘clever’ way around the problem of fairness in match fixtures is to
introduce an element of chance into the system. We have considered a number of
such systems. In the first of these random pairing systems, called the R1RaR3

system, each team in the top half is randomly paired to play with a team from the
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bottom half, for all matches in rl1, r2, and r3. In rl there are 24 different
combinations of such matches that can be arranged in principle. Since these
draws are conducted randomly, if some team is unlucky to draw a relatively
more difficult opponent than a team ranked below it, then this is deemed to be
the luck of the draw and the system cannot be blamed per se, as it is not the result
of any specific rule. The top 4 teams still enjoy a home-ground advantage in r1,
just as in the McIntyre system and the 070203 system. As before the 2 lowest
ranked losers are eliminated in going to r2, and the winners and losers that
proceed to r2 are ordered with respect to their relative order in the final 8. In r2,
each of the top 3 teams are randomly paired to play a team in the bottom 3, with
all matches played at the home ground of the top 3 teams. Once again the 2
lowest ranked losers are eliminated, leaving 4 teams to play in r3, where each
team in the top 2 is randomly paired to play a team in the bottom 2, at the home-
ground of the top 2 teams. A possible arrangement of matches in the R1RoR3

system is shown in Figure 8.

Al ————y

A2—— Bl—

A3— B2— Cl—

A4 — - B3 R C2 D1
A5 — ‘ B4 | ‘ C3 ” D2
A6 B5 ] Cc4 —

A7 — B6 ~——r

A8 —

Figure 8: A possible arrangement of matches in the random pairing system,
R1R2R3 , where in each round, teams from the top half are randomly

paired to play teams in the bottom half. In each transition to the next
round the 2 lowest ranked losers are eliminated.

On average one might expect that the matches in this system are closer than in
the 010203 system, but this is actually not the case. If one was to count the

differences in ladder position between the teams playing each other in r1 in the
010203 system (or the McIntyre system) the sum is 16. The difference in position

between Al and A8 is 7, the difference between A2 and A7 is 5, the difference
between A3 and A6 is 3 and the difference between A4 and A5 is 1. This
difference index in rl in the RjRaR3 system is actually also equal to 16, for any

combination of matches (Christos [1]). At least here, two of the games (referring
in particular to the matches Al vs A8 and A2 vs A7, in the Mclntyre system and
the 010203 system) are not practically decided before the ball is even bounced.

The difference index in r2 in the RyRyR3 system is also the same as in the
0103203 system, both equal to 9. Consequently the matches in the RiRgR3
system are not really any closer than in the 070503 system, but at least the

weakest teams do not necessarily get to play the best teams. In this respect the
R1R3R3. system is a progressive improvement over the 010903 system.

It turns out that the raw premiership probabilities for each team in the final 8 in
the RjRgR3 system are the same as in the 090203 system (Christos [1]). The
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R1R2R3 system does however give the bottom end teams a slight advantage over
the 010203 system because, as noted above, they may now not have to play the
very best teams.

In the R1RoR3 system, there is potential problem because there is quite a high

probability that two teams that played each other in rl may be selected to play
each other again in 12 or in r3, and two teams that played each other in 12 may be
chosen to play each other again in r3. It is appropriate then to ask whether it is
possible to rearrange matters so that rematches are excluded. In other words, is it
possible to find combinations of matches in later rounds where there are no
rematches between teams that played in earlier rounds. It turns out that there is
a 1 in 8 chance that a rl rematch in r3 cannot be avoided, even with a redraw
option (Christos [1]).

6. THE GENERAL RANDOM PAIRING SYSTEM G1G2G3

As note above, the R{RoR3 system is only marginally better than the 010203
system in that the bottom 2 teams will on average play less formidable
opponents. One can actually do better_if, in the random pairing process, one does
not insist that a team in the top 4 needs to play a team in the bottom 4, but
instead allows the teams to be paired together from any position on the ladder.
In this system, which we have called the general random pairing G1G2G3 system,
A1l can play any one of the other teams. There are actually 105=7x5x3 different
combinations of matches possible in rl. All games are played at the home-
ground of the team in the highest relative ladder position.

Al Al — Al —
A2 j A2 —— A2 ——
A3 A3 — A3——-|

Ad Ad Ad

A5 A5j—|—— A5—
A6 A6—— A6 l

A7 A7— A7—]

A8 A8—1 A8

Figure 9: Some possible arrangement of matches in rl in the G1G2G3 system

where teams are randomly paired from any ladder position to play
each other. The matches are played at the home-ground of the team
with the highest ranking for each chosen pair. The matches in this
system are clearly much closer in general than in the R1RR3 system.

The key advantage of the G1G2G3 system over the RiRpR3 system (and the
previous 010203 system) is that the matches are now in general much closer, see

Figure 9. It also turns out (Christos [1]), that rematches can be totally avoided in
the G1G3G3 system, because there are many more combinations of matches

possible in this system. In the G1G2G3 system, some of the bottom 4 teams also

have a small probability that they might host a home-final. Clearly Al will
always host a home-final in r1, while A8 can never host a home-final in r1. A2
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will host a home-final unless it is drawn to play Al, which occurs with
probability 1/7. Therefore A2 plays a home-final in r1 with probability 6/7. A7
will only get to host a home final in r1 if it plays A8, that is, with probability 1/7.
These probabilities are directly related to the number of teams above and below
each given team. From top position down to the eighth position these
probabilities are equalto 1,6/7,5/7,4/7,3/7,2/7,1/7, and 0O respectively. In r2
the corresponding probabilities, from top position to sixth position, are equal to
1,4/5,3/5,2/5,1/5 and 0 respectively. This situation should be contrasted to
the 010203 and R1RaR3 systems, where only the top 4 teams in rl get a home-
final and the top 3 teams in r2 get a home-final. In this respect, the G1G2G3

system further equalises the premiership probabilities for the teams in the final 8.

The raw premiership probabilities in the G1G2G3 system can be calculated by
tracing all possible paths with a positive outcome for each particular team to win
the premiership, under all possible random draws of matches (Christos [1]). The
raw premiership probability for Al in the G1G2G3 system is equal to 18.75%,
which is exactly the same as in the McIntyre, 010203 and R1RoR3 systems, but
here, in the G1G2G3 system, Al (and A2) can expect a much tougher assignment
than in any of the other systems. In fact A1 may even get to play A2. The
premiership probability for A8 is equal to 7.5%, which is more than in the
McIntyre system (6.25%), but is a little less than in the 070203 and R1R3R3
systems (7.81%). We believe that the greater evenness in the competition in the
G1G2G3 system far outweighs this slight decrease in the raw premiership
probability for A8, relative to the 010903 and R1jRgR3 systems. Recall that form
and home-ground advantage had a devastating effect on the premiership
probability for A8 in the McIntyre system, where it went from 6.25% to
approximately 1% or less. In the G1G2G3 system, the impact of these factors on
A8 are substantially reduced. A7 has the same premiership probability as A8,
that is 7.5%. A7 and A8 are however differentiated in the G1G2G3 system
because A7 has a small probability that it may host a home-final, against A8 in
fact. The premiership probability for A2 is = 16.79%, which is slightly less than in
the 010503 and RjRpR3 systems. Similarly the other raw premiership
probabilities in this system can be shown to be comparable to corresponding
probabilities in the other systems that we have considered, but what is more
important here is that, in the G1G2G3 system the competition is much more even,
after form and home-ground advantage are taken into account, the matches are
generally much closer (see below), no teams get a week off from the finals, and
even the home-ground advantage is partly averaged, with small probabilities that
some of the bottom 4 teams may also host a home-final. We emphasis however
that it is still of great advantage to finish closer to the top of the ladder, in this
system, because the top teams have a higher probability to secure a home-final,
their probabilities to survive each round are generally higher, and they
generally play teams weaker than themselves.

In the G1G2G3 system, the difference index can be much smaller than in the
previous systems considered, for instance for the first combination of matches
shown in Figure 9 the difference index is only 4. The average difference index in
the G1G2G3 system in rl is equal to 12 (Christos [1]), compared to 16 in the
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R1RgR3 and 010203 systems. In r2 the G1G2G3 system has an average
difference index of 7 compared to 9 in the R1RoR3 and 010203 systems.

7. SPLIT PAIRING SYSTEMS

There is another group of deterministic systems where the outer pairing principle
is not strictly adhered to, but any violations of fairness are compensated by other
factors. Consider for example the situation in r1 where the top 4 teams play each
other in a nested formation, while the bottom 4 teams also play each other in
another nested formation, as shown in Figure 10.

Al —
A2
A3
A4 ——
A5

A6
A7 ]
A8 —

Figure 10: A deterministic system with a split competition in r1 where the top 4
teams play each other as indicated, and the bottom 4 teams play each
other as indicated. The two losers in the bottom half are eliminated.

The top 4 teams are then reordered with the two winners, preserving the
previous relative ordering of these teams, followed by the two losers, also
preserving their previous ordering in the final 8. The final 6 for 12 is completed
with the 2 winners from the bottom half matches. The 2 losers from the bottom
half matches are eliminated. The nice feature about this system is that these
matches are much closer than the in the McIntyre system, the 010203 system, or
the two random pairing systems, R{RgR3 and G1G2G3, on average. In the
deterministic split pairing system, illustrated above, the difference index is equal

to (3+1)+(3+1) = 8 in rl, which is generally much less than that for the other
systems considered so far.

Although one might argue that these split systems seem to be unfair in r1, in that
A4, which is ranked above A5, gets a much more difficult opponent, namely A1,
compared to A5, who gets to play A8 at home, it should be noted that A5 can be
eliminated in r1, whereas A4 cannot, and also A4 will remain above A5 in r2 even
if it loses and A5 wins. A5 and A6 can now be eliminated in this system, but this
is compensated by the fact that A5 and A6 get a home-game and also get to play a
weaker team than themselves, unlike the situation in the other deterministic
systems.

Consider the system §710203 , where split pairing is used in rl, and outer pairing
is used in r2 and r3. The premiership probability for each of the bottom 2 teams
is equal to (1/ 2)4=0.0625, since these teams must win 4 games in succession in
order to win the premiership. This probability is less than in the 010203 system,
and the same as in the McIntyre system, but this is counterbalanced by the fact
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that the bottom two teams now get to play less formidable opposition in rl,
namely A5 and A6, instead of Al and A2. The premiership probability for the top
team Al is equal to = 13/64 = 20.3125%, which is a little higher than in the
McIntyre and the 010203 systems, but once again this is counterbalanced in the
split pairing system by the fact that A1 must now play A4, a much better
opponent than A8, as in the McIntyre system and the 010203 system. The team
in second position in the final 8, that is A2, has a premiership probability equal to
12/64 = 18.75%, which is slightly less than the premiership probability for Al in
this split system, but slightly more than the corresponding probability in the
010203 system, and the same as in the McIntyre system. Although this
probability is slightly higher in this split system, than the 010203 system, A2
must now play A3 instead of A7 in rl, as in the other deterministic systems.
When the form of each team, and the home-ground advantage are taken properly
into account, we expect that the dressed probabilities will be much more even in
the split competition than in the other deterministic systems. We have not carried
out these calculations here.

The 810203 system does however have a problem with regard to rematches.
There are no rematches in r2 from r1, and no rematches in r3 of matches played in
r2, but there is the possibility rematches in 13, that took place in rl1. It turns out
that in 1 in 8 of the outcomes to the r2 matches (for each outcome to the rl
matches), there is one rematch (between A4 and Al), and in another 1 in 8
outcomes to the r2 matches there are two rematches simultaneously (Al vs A4
and A2 vs A3). The former rematch takes place when the outcome to the r2
matches is ‘all bottom 3 teams win’, and the latter double rematch occurs when
the outcome to the r2 matches is ‘all top 3 teams win’. These rematches can be
avoided if the usual outer pairing combination in 13 (Figure 6) is changed so that
C1 plays C3, and C2 plays C4. One can also consider systems such as §1S203
,where a (2+4) split pairing arrangement is used in r2 (Christos [1]) but this
system is however plagued with a very serious and incurrable rematch problem.

Another interesting possibility is combine the splitting idea with random pairing.
As an example, in rl the ladder could be split into a top 4 and a bottom 4 and two
pairs could be chosen at random in each of these groups. We might symbolize
this system in r1 by the notation R$4. This system is interesting because it has an
average difference index in rl of 20/3=6.67, which is even less than the
difference index for the deterministic split pairing arrangement 1. In r2 and r3
one could have a general random pairing arrangement, so a possible overall
system might be RS1G2G3.

One could also consider systems where there are deterministic pairing rules in
some rounds and random pairing rules in other rounds. For obvious reasons, if
one wants to avoid rematches, it is necessary to have all of the deterministic sub-
systems in the earlier rounds and the random pairing sub-systems in later
rounds. As noted earlier, in the general random pairing arrangement Gz, there is

always enough freedom in r3 to ensure that there are no rematches from previous
rounds, but this may not be true for R3. A particularly interesting example of

such a system that utilize both determinism and randomness is S1G2G3.
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8. HANGING THE NUMBER OF TEAMS IN THE FINALS

Another variable in the consideration of finals systems is to vary the number of
teams that take part in the finals. In the case of the AFL there are 16 teams in the
competition, and the top 8 teams participate in the finals. One could either
extend this number up to 10, 12, or even 16, or one could reduce it to 6 or even 4.
The problem with increasing the number of teams in the finals is that there are
too many games in the finals series, unless more than two teams are eliminated in
some rounds. The problem with having too few number of teams in the finals is
that there are very few finals matches, and for most teams the season may have
already ended well before the home and away games are completed, a criticism
that incidentally also effectively applies to the McIntyre system.

9. SUMMARY

We started this investigation with a review of the McIntyre system that is
currently used by the AFL. When we took season form and home-ground
advantage into account we found that this system heavily favoured the top few
teams, which made it almost impossible for the bottom few teams in the finals to
win the premiership. We estimated that the top 2 teams each had approximately
a 30 % chance of winning the premiership while the bottom 2 teams only had
around a 1 % chance, or less, of winning the premiership. In the McIntyre
system, the top teams generally also get to play the weakest teams in the finals,
generally get to play at their home-ground, and the 2 top teams after r1 get a bye
in r2. The bottom 2 teams on the other hand must win 4 games straight, must
play the best teams and furthermore generally must play away. In the 1997
season the competition in the AFL was regarded as being one of the closest on
record, and in view of this, our estimates of the differential between the top teams
and the bottom teams is probably quite conservative. The situation would be
even worse if the competition was not so close. The exaggerated prospects for
the top end teams in the McIntyre system also detracts interest from the finals
series, particularly since in the first round the top teams play the bottom teams.
We also found some other inconsistencies or flaws in the McIntyre system.

We then proceeded to progressively improve the Mclntyre system, first by
making sure that all teams played in round 2, then by introducing random
pairings of teams, top 4 to bottom 4, and then any random pairing at all. We
calculated the raw premiership probabilities in these systems for each team in the
final 8. We were forced to examine in some detail the question of rematches in
later rounds between teams that may have already played each other in earlier
rounds. We then considered systems where the teams are split into two groups
that separately play amongst themselves, and finally we considered systems
where a combination of these various strategies is used in different rounds. In
the systems considered in this paper, the matches are generally much closer than
in the McIntyre system, the dressed premiership probabilities are much more
evenly distributed from the top team to the bottom team, and as a consequence
the games are much more interesting. Finally we note that our general strategies,
such as ‘outer pairing’, ‘random pairing” and ‘split pairing’ can be applied to
other sporting competitions with more than or less than 8 teams in the finals.
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SCHEDULING

Jim Cross’

Abstract

This paper discusses some of the problems associated with writing a computer
programme in scheduling draws for football and basketball leagues.

1. INTRODUCTION

Miller, Mangelsdorf and Cross have been scheduling football and basketball leagues
for some time. Currently we advise half-a-dozen competitions on their draws.
Originally David Wilson and Jim Cross approached Jack Hamilton after the VFL
unsuccessfully sought help from the computer programming companies. This is not
an uncommon occurrence: computer programmers write small programs to do
programming things, to run computers. Writing a program to do something in the
external world requires the ability to think out an algorithm, and then the writing
skill to turn the algorithm into a program. One of my colleagues was hired last
month precisely for the algorithmic skill: the (small) company had tried several
computer programmers, and after trial settled for a mathematician who could
program.

David Wilson is a genius. His program came after six months dedicated and
obsessive work. It was suited to the language (FORTRAN) and machine
(VAX/PDP11) of the time, to the style of draw required. His draws were for 1983-
1985 seasons. He left for more congenial work.

Chuck Miller rewrote the program in two stages. The first took a draw as given and
assigned venues. The second stage was to apply the same engine to make the draw.
Both allow one to fix certain games in certain rounds and at certain venues, and
complete the draw around these.

When the load became too great a couple of years ago, Christine Mangelsdorf joined
us, and successfully ran the two draws for this year.

The elements of a program of matches depends on what kind of competition is being
run. If there are 8 games each week with every team playing, and at least 8 different
venues, then almost any program will allow you to get a program. An integer
programming package will do a lot of it as an allocation problem. But there is a catch.
Solutions are sometimes hard to find. For the TFL in 1994 the successful run took 90
minutes of CPU time even with favourable initial conditions; we have run problems
for 24 hours without a solution being found.

1
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2. ELEMENTS OF A FOOTBALL DRAW

There are two parts to a draw:

1. who plays whom when, which round, e.g., Essendon v St. Kilda in rounds 1 and 8
of the actual draw for 1907; we call this the listing.

2. who pays whom where, which ground or venue, e.g. Essendon v St. Kilda at the
East Melbourne Cricket Ground in round 1 of the accompanying 1907 draw; we call
this the scheduling. Usually these can be done separately; in fact, it is normal to do
them in the above order, i.e., to decide who plays whom in all the rounds and then to
decide where they play. If the schedule of “wheres" or venues is impossible or
unsuitable, then we change the listing of the “whens" or rounds.

3. THE FORMULA BEHIND THE DRAW

A formula which does the listing of the games in each round is about 1000 words
long or three tight pages. The formula for the scheduling is about 8000 words long or
nearly 25 pages. Actually the formula is not a single algebraic expression like those
one might learn at school but is more like a recipe, a list of instructions of how to go
about working through all the possibilities so that if a list can be scheduled then you
can eventually find the schedule or list of grounds which fits the requirements clubs
and supporters and the AFL and other people impose. The program keeps track of
several thousand pieces of information while it is assigning grounds to matches, and
in fact there are 12 different types of information it keeps using and reusing, and it
does this for each pair of clubs. These requirements cover the number of home, away
and neutral games, the sequences of home/away/neutral games, the balance over
the two halves of the season, the special requirements of shared grounds, and other
features. There are three formulae for football draws: one by Ken McIntyre, perfect
for an odd number of teams and easily modified for an even number. Then there is
David Wilson's stroke of genius, first really seen in the draw for 1987.

4. PREPARATION

When we begin a draw we like to have some information quite fixed: all consultants
like to have solid information to begin with!

Apart from the number of teams and grounds, and when the grounds are available,
there are at least five factors which make life difficult or easy:

(1) How many times will team A play team B? Once, twice, three times? Wrong
choices for a whole competition will make the draw infeasible.

(2) How many games must teams play at home? away? neutral? This is usually not
too restrictive.

(3) Grounds: do teams share ground? What are the conditions imposed on ground
usage? This can be very savage.

(4) How many days between games? Five clear days means that if you play on the
Sunday you can’t be scheduled for the next Friday, for example.

(5) Sequences: many competitions like alternate home/away. With an odd number
of teams and a bye, this is always possible (you have HH or AA mid season), but
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the draw is inflexible. With an even number of teams it is impossible for all
teams.
(6) First round: are the home teams assigned or not? This causes grief.

5. LISTING OF ROUNDS

Over the years 1930--1980, the VFL used a cyclic permutation based on work by Mr.
Ken Maclntyre. The MacIntyre draw gave rise to the giant wheel Jack Hamilton used
for many years; on it each draw or listing took about an hour or so. When teams had
to be interchanged in order to accommodate the scheduling or because the
scheduling was unsuitable, the whole process took another hour or so. The
scheduling was somewhat inflexible, and the listing was often unsatisfactory: this
MacIntyre listing was used in 1986, where teams played Essendon (on top) one week
and Sydney (second) the next, and the complaints were loud. The two rounds mid
season where you played two teams once only were hard to choose from season to
season to make things “equal”, and insistence on home first round one year and
away first round the next built-in even more inflexibility.

The Wilson draw gives a listing where teams which played on the Monday of a split
round could be listed to play among themselves the following week (see rounds 4
and 5 of 1987). This listing was used in 1987 to accommodate the scheduling of
venues, particularly because of the two trios who shared Princes Park and the MCG
that year (ha, ca, fi at PP, me nm, ri at the G).

With Miller's new method of scheduling where games are played, it is became
possible to interchange rounds much more freely than was done in 1985, 1986, and
1987. Even parts of rounds can be interchanged to avoid many of the undesirable
features of the MacIntyre listing and to diagnose problems with the scheduling of
individual games -- in some cases the first game scheduled for (or assigned to, say,
Princes Park) might be assigned to the ground which makes a scheduling impossible,
i.e., the game has to be assigned to some other ground for scheduling feasible.

6. EVEN DISTRIBUTION OF HOME GAMES THROUGH THE SEASON

Compare the two draws for the 1907 season. They satisfy the 1 in 3 at home rule, and
they give each team 7 at home and 7 away. But Essendon has 5 of the first 7 at home
and then 2 of the last 7 at home in one draw, while the balance is better in the other
draw, with 4 of 7 and then 3 of 7 at home: you can do no better than that. This
constraint is imposed in the formula by a rule: a maximum of 4 at home in the first 7,
a minimum of 3 at home in the first 7; naturally, the second seven then looks after
itself! For 1908, the East Melbourne Cricket Ground could be regarded as always
“home" for Essendon and University, whomever they played. This makes
scheduling easier but life more difficult for the gatekeepers who have to let home
supporters into one side of the ground and the opposition's into the other where they
have to face into the sun. We give examples of two such schedules, one with the
home and away labelled, one without. In 1998 people noted that every team played
four or five of its first nine games at home, and every team but two played three or
four of their first seven games at home. This was deliberate.
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7. ALTERNATING HOME AND AWAY

Tom Hafey had a dream, so he said at VFL Park long ago and Warwick Capper
repeated on air last month, that the Swans would play every second Sunday
afternoon at the SCG - and win too, I suppose! If a team has its ground available
every second weekend, then its schedule can always be fitted to either of the patterns
(H for a home game, A for an away game).

HAHAHAHAHAH ... or AHAHAHAHAHAHA

See the 1983 draw for Sydney. See one of the 1907 draws for Essendon. In fact two
teams can be so scheduled providing the above left hand pattern is used for one and
the right hand pattern is used for the other: they have to play each other, so they
can't both be scheduled at home on that day! See one of the 1907 draws for Essendon
and St. Kilda. For three teams this can be done in full for two and in part for the
third, and we give examples for Essendon-St. Kilda-Geelong for 1907 and
Essendon/St.Kilda/University for 1908. The third team must have a pattern
matching one of the first two teams, and when it plays that team then its (the third
team's) schedule must be varied with home and away reversed for those two games.
Such scheduling sometimes affects other teams badly, depending of the other
restrictions.

8. SEQUENCES OF HOME G AMES

Up to the introduction of VFL Park teams almost always had one or two games at
home and then one or two games away. If we use H for a home game and A for an
away game again, the sequence of home and away games looked like

HAHHAAHAHHAHAA ..

In general at least one game in every 3 was at home and at least one game in every
three was away. If you look carefully at the draws for 1907 and 1908 given elsewhere
you will see that this feature is built in. With the introduction of VFL Park this
sequence was extended: now over half the games were not at home but at one's
opponent's ground or the neutral venue of VFL Park Waverley. Since over half the
games were not at home -- eventually there were 9 at home and 13 not at home - it is
almost impossible to force the sequence of one in 3 at home for everyone, so the
sequence became a rule of at least one in 4 at home and not more than three-in-a-row
not at home. Shifting of games to the MCG and elsewhere was reintroduced when
Jack Hamilton was commissioner in 1986. Teams ended up with fewer home games
in 1986, and Essendon finished 1986 with a fairly even distribution of home, away
and neutral games, with about 7 home games, 8 away, and 7 neutral games. When
the number of home games is 7 in a total of 22, it is no longer possible to guarantee
for every team that it will have at least one in 4 at home. Due to Easter Sydney had to
play North in Melbourne at the beginning of 1986 and so North ended up with 4-in-
a-row away mid-season. In 1987 a careful reading of the footy fixture will show that
Carlton, Hawthorn and Footscray have been “blessed" with a sequence of four games
not at home, corresponding to a rule of at least one in 5 at home. To get the current
rule of no more than two in a row away, other choices have to be given up: Brisbane
would like alternate home/away because of the travel, and it almost has this for
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1998, and Sydney might still like it, for habit and travel. But not everything is
possible at once!

9. SHARING OF GROUNDS

With two teams at the same ground as happened when Richmond and University
entered the competition in 1908, it is easy to program the schedule. The difference
between teams programs in 1907 and 1908 are minimal, with Essendon and
University sharing the East Melbourne Cricket Ground near Jolimont. With three
teams sharing the one ground the scheduling is not too bad, but there are certain
facts of life which then determine the number of home games. Look at Princes Park
in 1987. There are 23 Saturdays in the football season before the finals. With three
teams to share these Saturdays, and a couple of Mondays from the split rounds, we
have to divide 25 into three parts, say 8,8,9. These are the maximum numbers of
home games possible. But there are other teams in the competition, and their
demands for home games makes it almost certain that these maximum numbers of
home games for the three cotenants are not reached. In 1987 Hawthorn had 7 home
games, Carlton 8, and Fitzroy 8. With the three cotenants at the MCG the situation is
different: the Victorian Government approved several Friday night games, and in
1987 there are about half a dozen of these. Throw in three or four Sunday games and
we have about 33 possible times for using the MCG. Thus the number of home
games for Melbourne, Richmond and North are near nine. In fact, since they have to
play each other, it is possible for them to each have nearly 11 games at the MCG, and
you might like to check the 1987 and 1986 draws to see exactly how many games
each played there!

10. NEUTRAL GROUNDS

In 1907 teams had 7 games at home and 7 away - away meaning at their opponents'
grounds. In 1908, Essendon and University shared the East Melbourne Cricket
Ground; teams had 9 home games and 9 away games, except University and
Essendon played 10 at Jolimont and 8 on their other opponents' grounds. In 1987
Melbourne has 12 games at the MCG since it plays its cotenants Richmond and North
Melbourne there. Today we follow a pattern of HOME, on your own ground;
AWAY, on your opponent's ground, and NEUTRAL, on a ground not your's nor
your opponent's, for example AFL Park, the MCG, or elsewhere: in 1952 a full round
of matches was played on neutral grounds, in Sydney, Brisbane, Hobart, Albury,
Yallourn and Euroa. Other such games were played in 1903, 1904, 1979, 1980, and
1981, and today in the SANFL. Also Fitzroy played St. Kilda at Princes Park in 1986
when their home grounds were Victoria Park and Moorabbin.

In the “far" past the pattern was 11 home games and 11 away games, and with the
introduction of AFL Park around 1970 the pattern became 9 or 10 at home, 10 or 9
away, and 3 at AFL Park, and then with the Swans in Sydney 9 home, 9 away, 4 at
AFL Park. With increasing pressure for the “big" games to be played where crowds
could and would attend, the pattern of home, away, neutral became quite varied in
1986 and 1987 and up until today, with the following patterns being observed from
either what happened in 1986 and what was in the footy fixtures for 1987: a range of
from 7 to 10 at home, a range of from 7 to 10 away, and a range of from 3 to 7 at
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neutral grounds. For scheduling, the inflexible pattern given by the MacIntyre listing
and scheduling meant that the big games were immovable without enormous
dislocation and trouble. With the Wilson program the allocation of games to grounds
could be better controlled, and with the new Miller program there is even greater
flexibility.

Other restrictions force games to “neutral venues”: Optus Oval as it is now called can
have two games in the one weekend only three times a season, a condition imposed
by the residents and the council. When Carlton and the Western Bulldogs must have
home games on the one weekend and they have used up the three permitted, then
they must go to the MCG or Waverley. When the five teams at the MCG have
problems, caused by the five-clear-days rule, and they must play on the Sunday, then
one team must take its game elsewhere, as Collingwood did this year.

11. HOW FAST ARE THESE PROGRAMS?

The speed with which a program produces a completed schedule with the games
assigned to grounds for each round with a good balance of home, away, and neutral
venues depends on

(1) what you ask the program to do,

(2) what machine you run the program on, and

(3) the difficulties caused by the requirements imposed by clubs, supporters,
newspapers, and say, the AFL.

David Wilson's program used to take three minutes on one machine and three
seconds on a bigger machine to produce a draft. Miller's program takes about 42
seconds on a small machine and about 28 on a big machine to produce an answer.
However there is a qualitative difference between the programs which cannot be
measured in time but only in the better scheduling it produces. “Wrong" allocation of
a single game can cause the programs to make long time-consuming searches, while
rescheduling of that game to another venue can let the program complete the job in a
few seconds! In 1993 we did the TFL draw, where the constraints were exceptionally
heavy for any draw, and this one had byes as well as three groups of teams required
to play alternately. This took 90 minutes to find a draw, and of course they modified
it.

The original display of the associated materials was generously sponsored by the
VFL under the late Jack Hamilton and the late Alan Schwab whose unfailing
assistance and patience is again acknowledged most gratefully.
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DEVELOPMENTS IN THE DUCKWORTH-LEWIS (D/L) METHOD OF TARGET -
RESETTING IN ONE-DAY CRICKET MATCHES

Tony Lewis' and Frank Duckworth’

Abstract

In this paper we summarise the contents of the paper presented at the 3rd
Conference on Mathematics and Computers in Sport (Duckworth and Lewis [1]).

We then relate the developments that have occurred both to the take-up of the
Duckworth/Lewis (D/L) method by the cricketing authorities and also to the
modelling and modifications on the implementation of D/L in the light of
experiences.

1. INTRODUCTION

Developments up to 1996

At the 3rd Conference on Mathematics and Computers in Sport we presented our
method for resetting targets in interrupted one-day cricket matches (Duckworth and
Lewis [1]). In that paper we developed a two factor model of the average runs
scored Z(u,w) from the u overs remaining when w wickets have already been lost.
We then converted this function of average runs into one for percentages P(u,w) of
the average runs scored in 50 over innings, Z(50,0), which is the standard length of
innings for one-day international matches (ODIs). We then showed how, using the
percentage of innings lost due to stoppages, to adjust the target score for teams
batting second (designated as Team 2). We further showed how the method gave
sensible targets in all known situations of stoppages whereas other methods in
general use at the time gave sensible targets in few of these situations.

We summarised the results of approaches and presentations that had been made to
two of the major cricketing authorities, the Test and County Cricket Board and the
International Cricket Council, both of which are based in London.

Developments in 1996

Since the conference in September/October 1996 several developments occurred in
rapid succession. Several cricketing authorities almost simultaneously began to
show interest in the method. As a result our attention was quickly focused on the
writing of regulations for the method’s use in the field.
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Zimbabwe Cricket Union (ZCU)

The very first organisation to adopt D/L was the Zimbabwe Cricket Union. They
wished to trial the method for England’s tour in December 1996 and January 1997.
The method was called into use for the very first time on New Years Day. Zimbabwe
scored exactly 200 from their 50 overs and then rain between the innings led to 8
overs being deducted from England’s quota. From the D/L table (Appendix 2), 42
overs left with no wicket lost represents a resource percentage remaining of 92.5%.
Consequently England’s target was to exceed 92.5% of 200, that is 185. In the event
England only scored 179 and lost whereas they had exceeded the old average run
rate target of 168. There was much comment and correspondence in the British press
- not all of it complimentary to Duckworth and Lewis! Johnson [2] claimed that the
method ‘is so indeciferable (sic) that the admiralty might be interested in using it for
a new secret code’. Wilde [3] warned his readers that ‘anyone rash enough to try to
understand it while nursing a new year hangover will soon be reaching out again for
the aspirin’. However he did admit that being ‘set a stiffer target than previous sides
batting second only seems right as batting second in such circumstances used
virtually to guarantee victory’ (Wilde [4]).

England and Wales Cricket Board (ECB)

We were invited to make a presentation on 5th November to the Cricket Committee
of the Test and County Cricket Board (TCCB) which was shortly to be reconstituted
as the England and Wales Cricket Board (ECB). The emphasis of the talk focused on
the 40-over per side matches of the Sunday League, the UK competition in most need
of a suitable ‘rain-rule’. For this we had prepared the table of percentages based on
Z(40,0). Although our presentation to the ICC had been focused on the 50-overs per
side one-day internationals (ODIs) we found that the percentages were not
inconsistent with percentages obtained from TCCB domestic data and so we had no
hesitation in recommending a table using the average runs scored in 40 over innings
based on the original D/L model as outlined in Duckworth and Lewis [1]. The virtue
of this was that the percentages between the two different competitions were then
internally consistent.

Following our presentation and subsequent discussion, this committee
recommended that D/L should be trialed for 1997 in all three domestic one-day
competitions and for the Texaco ODIs against Australia, subject to there being no
problems from the use of the method in Zimbabwe. This recommendation to the
TCCB was formally accepted at its final meeting in December 1996.

International Cricket Council (ICC)

Subsequent to our presentation to the chief executives of the full member countries of
the ICC in July 1996 their management have favoured D/L over other methods and
have adopted a policy that recommends countries try out the method for ODIs and
perhaps domestic one-day competitions. The ZCU and the ECB were the first to do
so, as outlined, and the ICC itself wished to try out the method for the ICC Trophy
competition in Kuala Lumpur, March/April 1997. This is a limited-overs
competition between the associate member countries of the ICC which is used as a
qualifying competition for the World Cup, the top three countries gaining entry.
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D/L was called into use nine times in all. The three most notable games were a
preliminary round match in which Ireland beat Holland but would have lost using
average run rate (Appendix 1 - Case 1.1), the third place play-off where Ireland were
set a revised target higher than Scotland’s first innings total following an
interruption during Scotland’s innings (Appendix 11 - Case 1.2), and the final itself in
which Bangladesh scored the winning run from the last ball of their final over.
Kenya had scored 241 in their 50 overs and then rain between the innings reduced
Bangladesh to 25 overs and D/L gave a revised target of 166 to win (Appendix 1-
Case 1.3).

2. THE IMPLEMENTATION OF D/L

In early November 1996 following Zimbabwe’s election to use D/L for England’s
one-day matches starting 30th November, we began to write formal regulations to
cover all eventualities. It soon became clear that this was not going to be a simple
task. Issues which we had to think through, in many cases, had not even been
thought of in some of the other methods that were in use at the time. (See
Duckworth and Lewis [1] or [5] for a description of these methods.)

The Extrapolation Problem

The minimum number of overs for a viable match in ECB one-day competitions is 10
per side. If, after 10 overs, Team 1’s innings is prematurely terminated and then
Team 2’s innings is also restricted to 10 overs, the method of handling Team 1
interruptions, as outlined in Duckworth and Lewis [1], could lead to unrealistic
targets for Team 2.

An example of a Team 1 interruption described in Duckworth and Lewis [1] was the
match between England and New Zealand in Perth, Western Australia, January 1983.
England had scored 45 for the loss of 3 wickets in 17.3 overs (17 overs and 3 balls)
when extended rain led to 27 overs being lost from each team, allowing time for just
23 overs each. On the resumption, therefore, England only had 5.3 overs left. They
reached 88 (for the loss of 7 wickets). Linear interpolation within the table
(Appendix 2) shows that England lost 45.3% of their innings leaving 54.7% available
to them. With New Zealand knowing that they had only 23 overs from the start they
had 65.0% of their innings available to them. In essence the calculation explained in
the paper for New Zealand’s target is to scale up England’s 88 in the ratio of their
percentages of innings available, 88 x 65.0/54.7 = 104.57 or 105 runs to win.

Using the ratios of proportions of innings available to the two teams, however, is
liable to lead to grossly distorted targets. For example, suppose Team 1 have scored
80 runs without loss in 10 overs out of 50. From the table, Appendix 2, one sees that
with 40 overs left and 0 wicket lost they have 90.3% of their innings remaining. They
have had 9.7% available. If rain now causes their innings to be terminated and Team
2’s innings is also restricted to 10 overs then Team 2 have 34.1% available. Direct
scaling of Team 1’s score in the ratio of percentages available gives a target of 80 x
34.1/9.7 = 281.24 or 282 runs to win in 10 overs; an unrealistic task!

The problem is the unlikely sustainability of the well-above-average run rate in those
initial 10 overs, perhaps caused by a dry outfield, fielding restrictions but no doubt
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not a little luck which cannot be expected to hold out for a full 50 overs. The
extrapolation of the performance in the first 10 overs to the next 40 overs cannot be
assumed.

Similarly suppose Team 1 have made a slow but solid start having made 15 runs
without loss and the same situation occurs. Now Team 2’s target is 15 x 34.1/9.7 =
52.73 or 53 to win which is on the low side and caused by the assumed, but unlikely,
continuation of this low scoring rate. An acceleration would be likely to take place at
some stage in the later parts of the innings.

We saw potential problems of credibility in the method if such situations occurred in
practice.

Projected Score

What we felt was the more likely in these situations, however, and history generally
confirms this, was a regression towards the mean for the runs obtained in the
subsequent overs of Team 1’s innings. Consequently we introduced the concept of
the projected score based on the average performance in matches of the appropriate
length. This average was denoted by G, or G50 when referring to the average in 50
overs-per-side matches. For ODIs the average from match records of first innings
scores over several years was calculated to give G50 as 225 runs.

The projected score was then used as the basis for setting Team 2’s target.
Symbolically, if R and R represent the percentages of innings available to the two

teams respectively and if Team 1 scored S runs then Team 1’s projected score, P, is
INTI[S + (1-Rl) GN ] and Team 2’s target, T, is RZP.

In the match between England and New Zealand in 1983, described earlier, P is 189
and T is 122.85, that is 123 runs to win in 23 overs which, it may be argued, is rather
harder than New Zealand deserved because of the fairly weak position England had
been played into at the stoppage. And in the two hypothetical cases above, again
using G50 as 225, the targets would be 97 and 75 runs to win respectively.

The introduction of G50 meant that each standard of cricket using D/L is required to
calculate its own value. The instructions on this which we provided were to use only
first innings totals from matches in which Team 1 had the opportunity of receiving
all of their overs. For the ICC Trophy competition we calculated G50 as 190 based on
the 50-over per side matches of the 1990 and 1994 competitions.

Match lengths other than 50 overs per side

We created tables of percentages for 50 overs per side matches because these are by
far the most common lengths of innings in one-day matches around the world and
was consistent with the target resetting method used for the 1996 World Cup and
subsequently adopted as the standard ICC method (see Duckworth and Lewis [1] or

[5D).

This causes difficulties for match lengths other than 50 overs per side. It was no
trouble to provide separate tables, however, for the 40 and 60 overs per side matches
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of the ECB domestic competitions simply by dividing Z(u,w) by Z(40,0) and Z(60,0)
respectively and to calculate appropriate values for G40 and G60 from match
records. But if matches are shortened before they commence and are then
subsequently reduced due to bad weather then either some readjustment is needed
to the basic tables or separate tables are needed for every length of viable match.

The ICC method, according to the excerpt printed on the Cricinfo [6] database on the
internet, had not thought this through clearly. This led to a confused situation in
January 1998 between Kenya and England A. The match was shortened to 35 overs
per side before it commenced. Kenya scored 177 and England had reached 146 for
the loss of 3 wickets in 30.3 overs when rain caused the match to be abandoned. D/L
was not in use for this match (but it would rightly have given England A the win by
3 runs [Appendix 1 - Case 1.4]). The ICC method was incorrectly used. The
percentages had not been adjusted to a 35 over innings. England were declared the
winners initially but the logical adaptation would have made Kenya the winners,
albeit unfairly so because of the way the ICC method favours Team 1 for
interruptions occurring at the end of the match. Kenya appealed to Lord’s and
eventually the match was declared ‘no result’.

To avoid this problem we chose to provide a separate table for all match lengths
from 60 down to 10 overs per side. In so doing we hoped to make it easier for scorers
to do the calculations although we had also provided a purpose written computer
program for speed and accuracy on match days. We needed also to provide values
for G for all these match lengths. This was done by a scaling of the G50, ie 225,

using the first column of our table for 60 overs so that the published values for G60
and G40 overs were reasonably consistent with results from past ECB matches. G60
became 241 and G40 became 203 runs by this process.

Stoppages in mid-over

The ICC has a policy of ignoring fractions of overs when resetting target scores
which could lead to injustices in marginal situations. For the ICC therefore an over-
by-over table is sufficient. The ECB has a policy of using all balls bowled in
calculating target scores. Although it is quite feasible to produce ball-by-ball
percentages for all values of w this would have increased the number of tables by a
factor of six and there were already 51 tables! And so we chose to use just the set of
over-by-over tables and use linear interpolation in some circumstances. In order to
keep calculations for scorers as simple as possible we avoided interpolation for a
stoppage and restart mid-over by working with the next higher complete number of
overs left. However, when an innings was terminated then there was no alternative
but to use linear interpolation. For example, if 14.2 overs were left and then 5 overs
were lost, leaving 9.2 overs left, we would find appropriate percentages with 15 and
10 overs left respectively but would interpolate between 14 and 15 overs left if the
innings was terminated with 14.2 overs remaining.

Penalties

If an innings overruns its allotted time then umpires can impose a penalty on Team 2
for bowling their overs too slowly. If rain has already occurred or occurs
subsequently then the target adjustment is no longer the simple matter that other
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methods imply by ignoring the issue. Although the situations do not often occur,
when they do, the process needs to be clearly defined. A significant proportion of the
regulations was given over to this rare occurrence, helping to create, perhaps, that
impression of the “‘unfathomable’ nature of the method!

Margin of Victory

It has been traditional for results in rain affected matches to be awarded to one side
‘by faster run rate’. This is now obsolete and in many cases inaccurate. For example
in the Zimbabwe-England game on 1 January 1997, Zimbabwe scored at exactly 4
runs per over whereas England scored 179 in 42 overs, a run-rate of 4.26. They lost
having failed to exceed the D/L target of 185 but actually had the faster run rate!

In the ECB regulation, teams exceeding a revised target win by the number of
wickets, as is traditional, but teams failing to reach a revised target lose by the
number of runs below the exact target and rounded up. In both cases ‘D/L method’
is appended to the result.

In abandoned matches teams win by runs in both cases with ‘D/L method’
appended, the number of runs above or below the exact target being rounded up as
above. (See Example 1 below and Appendix 1- Case 1.4)

3. DEVELOPMENTS IN 1997

1997 was a very interesting year for D/L. It was used a total of 33 times involving
1 ODI, 9 ICC Trophy matches and 23 ECB matches including one in which Australia
played. Several issues came to light particularly during the early part of the ECB
season

Communication of revised target/par score

Prior to the start of the 1997 season the ECB issued an instruction to counties that a
section of the scoreboard should show the par score (the minimum runs required to
be in a winning position) or Team 2’s score relative to par (+/-) whether or not rain
had interrupted play and should also show the revised target following rain. In the
early part of the season this had not been implemented at many grounds and so the
first occasion when D/L was used, a termination of the match involving
Warwickshire and Glamorgan, the spectators left the ground not knowing who had
won. The press, therefore but rather inappropriately, blamed us and the D/L
method for the uncertainty. That Glamorgan won by 17 runs (batting second!) was
not fully known to many spectators until the next day.

Similar situations occurred from time to time at other grounds around the country -
and also occasionally the problem of the slowness in communicating the revised
target to the captains and spectators at the resumption in play. These led to the
provision of the facility to calculate revised target scores for all the possible number
of overs that could be lost. It came in the form of output from the computer software
that we had developed for the convenience of scorers and administrators and could
be produced in anticipation of a restart and the revised target could then be
communicated instantly.
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Press and player reaction

On Sunday 8 June 1997 no fewer than seven of the eight matches were rain affected.
Some sections of the media, but not all, were very critical of the method - the word
‘unfathomable’ was frequently in evidence in press reports the following day. The
targets themselves, however, were not seriously disputed except in one case.

In this match (see Appendix 1 - Case 1.5) Durham scored 216 in their 40 overs.
Sussex had begun their reply and had lost an early wicket. Rain was threatening and
so they attempted to ensure that their score was at par by the 10 over point of their
innings, the minimum number of overs per side required to make the match viable.
With one wicket lost the par was 42. In attempting to achieve this however they lost
more wickets and so par increased since it also represents the minimum return the
team should have gained from the expenditure of resources to date in pursuit of the
target. Hitting out even more they lost a wicket right at the end of the 10th over and
had reached 39 for the loss of 4 wickets. The umpires took the players off the field at
that point. Par was 85 (84.67) at this juncture and so Sussex were losing by 46 runs
which would have been the margin of their defeat if the match were abandoned at
that point and no further comment would have been likely.

After a lengthy stoppage, however, the rain cleared and the umpires decided that
there was time for four more overs. The revised target was 118.37 or 119 runs to win
(Appendix 1 - Case 1.5). And so Sussex required 80 more runs to win in 4 overs.
They didn’t even try, and ended by blocking out the final over in some sort of
protest. The chief executive of Sussex was quoted as saying that this proves that D/L
does not work. He put in a complaint to Lord’s which the media interpreted as a
complaint against D/L but subsequently we heard that the thrust of the complaint
was not against D/L but against the umpires for keeping the players on the field
whilst rain was falling in order to complete the minimum of 10 overs to make the
match viable. The complaint was rejected by the ECB.

Nevertheless the match did focus debate on whether or not our method was fair
since it did not retain the probability across the stoppage that Team 2 could win. We
have argued strongly that our method retains any advantage in terms of runs that a
team may have established. If the match were evenly balanced at the stoppage it
remains evenly balanced upon restart. To retain the same probability would involve
changing the advantage Team 1 had established and making the amount of the
change dependent on the number of runs Team 2 had actually scored. We think this
to be undesirable and also unworkable.

We drew an analogy with golf. Suppose after two rounds of a professional
tournament one player is eight strokes ahead of the field. With two rounds left there
is a good chance that someone would emerge to challenge and perhaps overtake the
leader. If one round is lost to rain, however, there is now only one round left for the
field to catch up and the probability that the leader goes on to win is increased. To
retain the same probability of someone catching the leader, but now in only one
round, would require the lead to be reduced. This would be totally unacceptable.
Similarly in one-day cricket, any advantage in terms of runs established before an
interruption must be maintained across the stoppage. Following a stoppage many
cricketing scenarios are less likely or even impossible. We see no special reason that
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just the probability of the win to Team 2 should be preserved. To do so would result
in discontinuities in margins of defeat/victory.

In the Sussex situation had play not resumed then Sussex would have lost by 46 runs
but if 1 ball (in theory!) were possible then providing the same probability of victory
would change the requirement from the last ball to perhaps 6 and failure to achieve
this would make the margin of defeat in single figures. We feel that continuity is an
important feature of the modelling and in the cricketing logic.

We also feel that the Sussex players were using tactics appropriate to the old average
run rate method - only the total mattering and not the wickets lost in the process.
Having gambled everything and failed to reach the par score after 10 overs, on the
assumption that the match would then be abandoned, we feel that Sussex had no
reason to claim a second ‘equally likely” opportunity to win the match when it
happened to restart. Had they batted more conservatively, and reached say 35 runs
but not lost any more wickets other than the one lost early on, then allowing for the
possibility of a restart would have left them with a more ‘gettable’ target of 77, a
further 42 in the last 4 overs [Appendix 1 - Case 1.5]. Even with only one over of play
possible their task would have been a suitably challenging 16 runs.

A further counter to the Sussex ‘complaint’ is in the situation that would have
occurred had they lost no wickets at all and scored, say, 68 runs in 10 overs. In this
case there would have been no restart to the game at all!. With 4 overs left the target
to win would have been 68 which they had already achieved, being 36 runs ahead of
par. Would Durham have then complained? We doubt it. Having scored at well
above the asking rate no-one believes it unusual or unreasonable to have already
exceeded the revised total in an interrupted match. Yet Durham would have been
denied the opportunity of getting back into the match by the loss of those 26 overs.
Their probability of winning the match would have been reduced to zero.

In summary, these arguments confirm that the only sensible criterion is to maintain
any run-differential across a stoppage and not the probability.

4, MODIFICATIONS TO D/L

In the light of experiences during the 1997 season several modifications have been
introduced to make the method simpler to use and to model more accurately the
practical situation in certain circumstances.

Abolition of special terminology

In 1997, in order to tightly define the procedure for correctly setting the target using
the set of 51 tables, several terms were defined which tended, again, to give an aura
of complexity. The need for these terms such as initial overs allocation, initial target
score and revised target score has been abolished with our revisions for 1998.

Reduction in the number of tables

A major (apparent) simplification has been to reduce the number of tables down
from 51 to just one and this one table applies to all lengths of innings from 60 overs
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downwards. This has been achieved by representing percentages of innings
remaining as being relative to the resources available for a 50 over innings. We chose
this as the standard for 100% because 50 overs per side matches are by far the most
common around the world.

Consequently, innings which start with more than 50 overs commence with more
than 100% of the resources compared with a 50 over innings. The table in
Appendix 2 shows that 60 over innings start with 107.1% of the resources compared
with a 50 over innings and 40 over innings start with 90.3% of resources compared to
a 50 over innings. The figures are denoted as ‘resource percentages remaining’ for
the overs that are left from 60 down to 0 and the wickets that have fallen from 0 to 9.

In reducing the tables by such an extent we could then afford the luxury and
convenience of ball-by-ball tables in order to avoid the need for special rules or
interpolation when stoppages occurred between overs. In our examples, for
calculations of targets involving stoppages in mid-over we shall state the necessary
ball-by-ball percentages but for checking the calculations readers will need to
interpolate. Note that the use of linear interpolation yields no difference in the actual
targets set or decisions on the winners of abandoned matches in our examples, but
there are slight discrepancies in the decimal places between the exact ball-by-ball
targets and the interpolated ones.

Modification of targets in Team 1 interruptions

We are indebted to a scorer for the Marylebone Cricket Club (MCC), for the
identification of an inconsistency in the D/L procedure which would occur only in
cases where Team 1’s innings had been interrupted.

To illustrate this, consider the situation where Team 1 have successfully negotiated
their first ball in a 50 over innings and then there is a long interruption. Play resumes
with just enough time for Team 1 to complete a 10 over innings and for Team 2 also
to receive 10 overs. Common cricket sense dictates that the two teams have been
treated virtually identically except for one ball and so Team 2’s target should be little
different, if at all, to Team 1’s score S in their total of 10 overs. Consider four cases.
Suppose S = (i) 80 runs (ii) 60 (iii) 100 (iv) 120 runs.

In the process of projecting Team 1’s total score, outlined above, R would be 33.7%
and R would be 34.1%. Assuming G50=225 then in (i) Team 1’s projected score, P,
would be INT[80 + 0.663x225] = 229 and Team 2’s target T would be 34.1% of 229
which is 79 to win and not dissimilar to Team 1’s score of 80. But in (ii) T=71 for
S=60, in (iii) T=85 for S=100 and in (iv) T = 92 for S=120. In other words in most cases

the target score is unacceptably and illogically different from the score achieved by
Team 1.

Revised method of application of D/L

The identification of this problem, part way through the ECB domestic 1997 season,
led to a further rethink on how to handle the problems of Team 1 interruptions -
there was no concern when just Team 2’s innings was interrupted. The review of the
process led to the following revised way of applying the D/L method. It has been
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included in an overall review of usage of D/L in 1997 and the changes have been
adopted for use in 1998.

Team 1 score S runs in their innings with resource percentage R available for their
innings of 50 overs. Team 2 expect to have resource percentage available of R .

o IfR <R then the target is set in proportion to the resources available to the two
teams.

e IfR 2R then to Team 1’s score S we add the amount of the excess percentage of
G50, the average total in 50 overs,.

e IfR =R then the target T is Team 1’s score S and there is no discontinuity in the
target

e For matches with overs per side different to 50, the same process is used and
resource percentages from the table Appendix 2 are used. Further, G50 for the
appropriate standard of competition is used in all cases since all percentages are
based on the 50 overs innings being the standard 100%.

The process of setting the target T is summarised as follows
IfR <R T=SR /R (1a)
IfR 2R T=S+(R -R)G50/100 (1b)

The following diagram depicts the target T for all values of R for arbitrary R

Target T for resource percentage R, given R,

Average
Below

Target T ----->

The heavy middle line represents average performance per unit of resource for
Team 1. The other two lines represent Team 2’s target for performances of Team 1
above and below average. The aspects of regression towards the mean lead to more

realistic targets when initial performance has been unsustainably above or below
average.
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Worked examples

There follow several examples of the application of the currently adopted D/L target
resetting procedure which illustrate its simplicity and fairness.

Example 1: Premature curtailment of Team 2's innings

7 Feb 1998, Melbourne, Mercantile Mutual Cup. Victoria scored 223 runs from their 50
overs and WA had lost one wicket in scoring 188 runs in 43.2 overs. Play was then
stopped by the weather, and the match was abandoned. A decision on the winner was
required.

Victoria:
Their innings was uninterrupted: Resource percentage available: R =100.0%

Western Australia:

At start of their 50 over innings: Resource % available 100.0%
At termination: 6.4 overs left, 1 wkt lost: Resource % left/lost 23.6%
Resource % available for WA = 100 - 23.6 RZ = 76.4%

Because R < R the target is set in proportion to the resource percentages available.
From equation (la):

T=223x76.4/100=170.37 ie 171 runs to win

Since WA had scored 188 runs then D/L would have declared them the winners, ‘by
18 runs (D/L method)’. (As discussed above, the runs above/below the exact par,
here +17.63, are rounded up in giving the margin of victory)

Notes

(i) The above result would have been quite fair as WA were clearly in a very strong
position when play was stopped and would most probably have gone on to win the
match if it hadn't rained.

(ii) Most other methods of target revision in use would, unfairly, have made Victoria
the winners. The average run rate method gives 194 to win and the current ICC rain-
rule would require 94.2% of the target ie 211 to win by the end of the 43rd over.

(iii) The method of Discounted Total Runs, the actual Australian rain-rule in use for
the match, also required WA to have scored 211 by the end of the 43rd over to be
declared winners. This method discounts, by 0.5% per over lost, the total of runs
from Team 1’s equivalent number of highest scoring overs.

(iv) Victoria were declared the winners much to the annoyance of Western
Australians (Casellas [7]).

Par Score

This example illustrates further the idea of the D/L Par Score. In chasing their target
Team 2 need to be aware of the minimum score necessary in order to be declared the
winners if the match were abandoned at that stage. It is also a useful gauge of a
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team’s progress towards its target even if it doesn’t rain. The par score depends not
only on the number of overs bowled but also the number of wickets that have fallen.

In Example 1 if WA had lost several more wickets then the balance of the match
would not have been quite so clear cut. The par scores to win, given below, show
that WA, with 188 runs on the board after 43.2 overs chasing 223, would be ahead of
par with up to 7 wickets lost. Had they lost 8 or 9 wickets at that stage then the
balance of the match would have been with Victoria who would then have been
fairly declared the winners at the abandonment.

w 0 1 2 3 4 5 6 7 8 9
Par to win 170 171 172 173 175 178 181 186 194 207
Winners WA WA WA WA WA WA WA WA Vic Vic

Example 2: Interruption to Team 2's innings

23 Feb 1997, Eden Park, Auckland. In a ODI New Zealand scored 253 runs from their 50
available overs. England had not lost any wickets in scoring 47 runs in 6 overs. Play
was then suspended and 24 overs were lost.

New Zealand:
Their 50 over innings was uninterrupted: Resource % available: R =100.0%
England:
At the start of their 50 over innings: Resource % available: 100.0%
At stoppage, 44 overs left, 0 wkt lost: Res % left: 94.6%
At restart, 20 overs left, 0 wkt lost: Res % left: 58.9%

Res % lost: 35.7%
Resource % available for England’s innings = 100.0 - 35.7 R = 64.3%

Since R < R England’s target would have been set in proportion to the resource
percentages available. From equation (1a):

T =253 x64.3 / 100.0 = 162.68.
England would have needed 163 runs to win, a further 116 in 20 overs.

Note: Average run rate was in operation for this match which gave a total of 132 to
win. Requiring only a further 85 more runs in 20 overs England won with more than
6 overs to spare.

Example 3: Interruption to Team 1’s innings

8 June 1997. Derbyshire v Hampshire In an ECB Axa Life (Sunday) League match,
Hampshire had lost 5 wickets in scoring 114 runs in 27 of an expected 40 overs when
rain interrupted play and led to the match being shortened to 33 overs per side.
Hampshire resumed to finish on 170 in their 33 overs.

Because of the different stages of the teams’ innings that their 7 overs are lost, they
represent different losses of resource.
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Hampshire:
At the start of their 40 over innings, Resource percentage available: 90.3%
At stoppage, 13 overs left, 5 wkts lost: Res % left: 32.3%
Atrestart, 6 overs left, 5 wkits lost: Res % left 19.0%
Res % lost 13.3%
Resource percentage available to Hampshire = 90.3 - 13.3 R =77.0%
Derbyshire:
At the start of their 33 over innings, Resource percentage available: R =81.5%

Since R exceeds R, by 4.5%, (=81.5 - 77.0) we add to Hampshire’s score 4. 5% of G50.

G50 is 225 for ECB matches From equation (1b) the target is:
T =170 + 4.5% of 225 = 180.13.
Derbyshire needed 181 runs to win in 33 overs.

Notes:

(i) Even though this match began as a 40 over-per side we still use the average
performance in 50 overs, G50, since the resource percentages used from the
single table are all relative to resources available in 50 overs per side innings.

(ii) Derbyshire’s target is higher than Hampshire’s total in the same number of
overs. This neutralises the advantage that Derbyshire would have had from
knowing in advance of the reduction in their overs whereas Hampshire, who
were pacing their innings to last 40 overs, suffered from an unexpected and
untimely shortening of their innings.

(iii) All other target resetting methods in use would make no allowance for this
interruption. They would set the target of 171 to win because both teams were to
receive the same number of overs.

(iv) Derbyshire reached the D/L target of 181 in the last over.
Penalties

When umpires decide to impose a penalty on Team 2 for slow bowling and rain
interrupts play before or after the application of the penalty then consideration is
needed of the effect of the penalty on teams’ resource availabilities. Nowadays, the
general principle applied by the rules of most one-day competitions is that Team 1
receive the scheduled number of overs that weather permits even if time overruns.
Umpires then make a decision on how many overs penalty should be imposed on
Team 2 for the time over-run.

Let us suppose that Team 1 have had the opportunity to receive N overs and the
umpires impose a penalty of N overs. The D/L method converts the overs penalty
into a corresponding resource penalty, R . It is calculated by

R =P(N,0)-P(N -N 0).

The Team?2 penalty is imposed, satisfying certain boundary conditions, by
attributing Team 1’s score S to R less resource than was actually available. Hence

equations (1) are modified such that
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T=SR /(R -R) ifR <R -R (2a)
2 1 p 2 1 P
T=S+(R -[R -R])G50  ifR >R -R (2b)

Separate equations have not been presented to the cricketing authorities. Instead we
have given instructions on how to calculate the penalty R as above and then to
revise downwards R by this percentage to give an updated R prior to applying
equations(1).

Example 4: Interruption to Team 1 and a bowling penalty for Team 2

Scenario: Team 1, in an ODI, reach 230/7 in 48 out of their 50 overs when rain
interrupts play so that Team 1’s innings is terminated and there is then only time for
Team 2 to receive 45 overs. Even allowing for the termination of Team 1’s innings,
the umpires decide that Team 2 should be penalised 2 overs due to slow bowling
which has been incorporated into the reduced overs Team 2 will receive.

Team 1:

At the start of their 50 over inningsResource percentage available 100.0%

At termination: 2 overs left: 7 wkts lost:  Res % left/lost 6.9%
Team 1’s Resource percentage available =100.0 - 6.9 R =93.1%

Team 2 penalty: Team 1 had 48 overs (= N ) available to them. The resource penalty
to Team 2 corresponding to the 2 overs penalty(=N ) is:-

Resource percentage for 48 overs left, 0 wickets lost 98.3%
Resource percentage for 46 overs left, 0 wickets lost 96.5%
Resource penalty 1.8%
Updated resource % available to Team 1: 93.1 - 1.8 = R =91.3%

Team 2:
At the start of their 45 over innings, Resource percentage available R =95.5%

R exceeds R by 4.2% (=95.5% - 91.3%). From equation (Ib), using G50=225,
Team 2’s target is:

T= 230 + 4.2% of 225 = 239.45
Team 2 would need to score 240 runs to win in 45 overs, 10 more runs than Team 1
actually made in 48 overs.
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5. DEVELOPMENTS IN 1998
Within innings data

Towards the end of 1997 we received, in electronic form, the over-by-over scores
from all the ECB matches of the 1997 season. This has enabled us to begin to test out
the accuracy of some of our estimates of the parameters in our model, Z(u,w), of the
average total runs obtained with u overs left and w wickets already lost. (See
Duckworth and Lewis [1]).

The analysis of this data will be the subject of a future paper. Although more work
still needs to be done, early indications are that the estimates of the parameters from
the 1997 data are not sufficiently different from our initial estimates of those
parameters currently in use and which are reflected in the percentages of
Appendix 2. In the immediate future, therefore, Appendix 2, and its corresponding
ball-by-ball tables are being used for all applications of the D/L method.

We are anxious to obtain as much data of scores from within innings as possible from
around the world. Prior to the receipt of the 1997 ECB data much of our database
with this detail has been from personal observation and manual recording from
matches watched either at the grounds or on television. Data on total scores has been
obtained from the Cricinfo [8] database and from Wisden [9] (previous year’s
editions). We need data from other sources which we would welcome either in
printed format or, preferably, in electronic format.

Fielding restrictions and other innovations

In ODIs and several other limited-overs competitions there are restrictions on field
placings. Within the first 15 overs, referred to as the “15 over rule’, only two fielders
are permitted to be beyond a certain distance from the bat at the moment of delivery
of the ball. The purpose of the rule is to encourage more attacking batting in the
early part of a team’s innings when, usually, it is a period of foundation building for
a later onslaught on the bowling. Although Clarke [10] has shown that this is not
optimum, it has taken the introduction of the 15-over rule to change batting sides’
tactics. There are possible implications for our percentages of innings as tabulated in
Appendix 2 although our immediate response is that we do not attempt to model the
rate of scoring of runs, but only the average runs obtainable in overs available.
Nevertheless early indications from our analysis of not only our ODI database but
also the ECB Benson & Hedges competition which also uses the 15 over rule, are that
there is no significant difference of the average percentage of the total of runs scored,
for the wickets lost in 15 overs, between actual matches and that predicted from the
D/L model. In other words, on average there is an increase in the rate of wickets
falling corresponding to any increase in the rate of scoring runs in the first 15 overs.
There is no evidence, therefore, that the 15 over rule has any material effect on the
validity of the D/L targets.

In the 1997/98 season the Australian Cricket Board (ACB) introduced a 30 over rule
which retains some less severe restriction on field placings until the end of the 30th
over. Although we do not have any data from the Australian season just past we are
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confident that our findings in respect of the 15 over rule will similarly show that a 30
over rule would not have any material effect on the validity of D/L targets.

A further innovation in the Australian 1997/8 season was the introduction of the
concept of a 12-player squad for its domestic one-day competition - the Mercantile
Mutual Cup. A team may select a different set of 11 players from the squad for
batting and fielding. The effects of this innovation are not yet known but are only
likely to be on the parameters of the D/L model and not on the model itself. The
effects on the parameters could well be to bring the curves (see Duckworth and
Lewis [1] or [5]) more in proportion to each other since there is likely to be an
increase in the number of specialist batsmen in the ‘batting’ squad. And the ‘fielding’
squad of their opponents will have more specialist bowlers so reducing the
variability in the quality of both the batting and the bowling.

England and Wales Cricket Board (ECB) take-up of D/L

In October 1997 we were invited to Lord’s to present a review of the application of
D/L to the Cricket Advisory Committee. In this review as well as giving an
overview of the use of D/L in the 1997 season we presented our recommendations,
outlined above, on how the application of the method could be simplified. There
was unanimous agreement to recommend adoption of the method again for the 1998
season, which included the recommendation also for the ODIs with South Africa in
May and a Tri-nation series with South Africa and Sri Lanka in August. The ECB
have also recommended to the ICC that D/L becomes the standard ‘rain-rule’ for all
ODIs.

Subsequent to this meeting we have been exploring the possibility with the ECB of
introducing the method to the Minor Counties level of cricket in the UK. As
mentioned earlier, county scorers have a software program on a laptop computer
which they use on match days to ensure speed and accuracy of the target resetting
process. Minor counties scorers do not all have access to a laptop computer and so
there would need to be a training programme of these scorers so that they could
operate the D/L system entirely manually.

Early in 1998 we delivered a workshop to several ECB staff who would be
responsible for the training of the scorers if the system were introduced at this level.
The reaction was generally supportive of its use but doubts were expressed on the
possibility of undertaking the necessary training in time for the beginning of the
season. The expectation as we write, therefore, is that the method will be introduced
into the later stages of the one-day competition for the MCC Trophy.

This step into the lower levels of cricket is confirmation of our strong conviction that
the method is now simple enough to be used in limited overs matches at club cricket
level. Indeed, at the end of the 1997 season we were asked to use D/L in arbitration
of a club competition in Nottinghamshire by deciding on the winning team in their
cup final which couldn’t be finished by the end of their season.
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International adoption of D/L

The situation described in Example 2 above undoubtedly was instrumental in
persuading New Zealand to adopt D/L for their Shell Cup competition and for the
ODIs with Zimbabwe and Australia in early 1998. In the event, due partly to a hot
and dry El Nino induced summer, it was not invoked. Nevertheless New Zealand
were the third of the ICC full member countries to adopt the method. - we only have
six to go! And we are hopeful that the situation of the Victoria-Western Australia
match in Example 4 may help persuade the ACB to adopt D/L.

As mentioned earlier, the management of the ICC are strongly supportive of our
method and are making every effort to encourage the six other countries to at least
try out our method in competition in the near future. The ICC have jurisdiction over
the re-introduction of cricket into the 1998 Commonwealth Games in Malaysia in
September. D/L will be the rain rule in use for this tournament. It will also be used
in the ICC Knock-Out tournament to be held between all nine full-member countries,
in Dhaka, Bangladesh in Oct/Nov 1998.

In May 1998 we addressed the ICC Cricket Committee (Playing) in an ICC-supported
attempt to persuade those six countries to adopt D/L with the medium view to D/L
being adopted as the official ICC rain-rule for ODIs and, of course, the 1999 World
Cup which is to be held in the UK. At the time of writing the results of this
presentation are unknown.

6. DEVELOPMENTS FOR THE FUTURE

There is still considerable work to be done in the statistical analysis of the increasing
data now becoming available to us. Although we are comfortable with the
parameters at present and hence the percentages obtained in Appendix 2 there is
little doubt that the character of the one-day game is changing both in terms of
players’ skills at the game and the tactics that are adopted.

Consequently, we intend to keep our database up-to-date, to review the parameters
and, at the appropriate time, make a change to these which will affect the tables of
percentages, to reflect these changing patterns of the game.

7. CONCLUSION

We have given a summary of our experiences of the use of the Duckworth/Lewis
method in 1997 both at the technical and practical levels. In the light of these
experiences we have introduced some modifications to the way the method operates
which have resulted in substantial simplification in its implementation.

The method has been used both domestically and internationally and, although there
has been some scepticism in some sections of the media, it is gradually gaining
acceptance.

Several countries have now adopted the method and we are hopeful that the method
will become the accepted international standard and be used for the 1999 World Cup.
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We recognise that there is still work to be done on the statistical analysis of current
and future data in order to keep up-to-date the percentages used in the target
resetting process.
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APPENDIX 1

Case 1.1 ICC Trophy, Kuala Lumpur, March/April 1997

Holland scored 211 in their 50 overs. Ireland had reached 91 runs for the loss of 3
wickets in 23 overs when rain caused the match to be abandoned. [A minimum of 20
overs per side was required to make a match viable.]

At the stoppage: 27 overs left, 3 wkts lost: From Appendix 2, Percent lost 59.3%
Reduction in target: 59.3% of 211 = 125.12

Revised Target (Par Score) 211 - 125.12 = 85.88

At 91 (with 3 wkts lost) Ireland were declared the winners - by 6 runs

Case 1.2 ICC Trophy, Kuala Lumpur, March/April 1997

Scotland had reached 56 for the loss of 1 wicket in 19 of their 50 overs when rain led
to the deduction of 5 overs from each innings. Scotland resumed to score 187 in their
45 overs.

G50 was 190 for the ICC Trophy matches
With 31 overs left, 1 wkt lost, percentage of innings remaining: ~ 74.4%
With 26 overs left, 1 wkt lost, percentage of innings remaining:  67.2%
Percentage of innings lost due to the stoppage 7.2%
Using the method as applied in 1997, Scotland’s projected total in 50 overs was
INT[187 + 7.2% of 190] = 200
For Ireland R2 = 95.5%, hence T = 95.5% of 200 = 191.00, 192 to win Ireland were all

out for 141 in 39 of their 45 overs and lost

Case 1.3 ICC Trophy final, Kuala Lumpur, March/April 1997

Kenya scored 241 in 50 overs. Rain between the innings reduced Bangladesh to 25
overs.

Percentage of innings remaining for 25 overs left and 0 wkt lost: 68.7%
Revised target is 68.7% of 241 = 165.57 and 166 runs to win.
Bangladesh won on the last ball of the match.

Case 1.4 Tour match Nairobi, Kenya, 3 Jan 1998, Kenya v England ‘A’

In a match shortened before the start to 35 overs, Kenya scored 177 and England ‘A’
were 146 for 3 wickets when further rain caused the abandonment of the match. The
ICC method was in use for this match.

ICC Method - Logical Interpretation:
For a 35 over match - percentage factor 84.0%
For a 31 over match - percentage factor 77.8%
For a 30 over match - percentage factor 76.0%
Interpolation of factor for 30.3 overs  76.9%
Target score calculation: 177 x 76.9 / 84.0 = 162.04 ie 163 to win
Under the logical use of the ICC method at 146 England ‘A’ lose

ICC Method - As used omitting the correction for a 35 over match
For a 31 over match - percentage factor 77.8%
For a 30 over match - percentage factor 76.0%
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Interpolation of factor for 30.3 overs  76.9%
Target score calculation: 177 x 0.769 =136.11 ie 137 to win
Under this misuse of the ICC method at 146 England ‘A” win

D/L Method - As revised for 1998 using the table Appendix 2:

Kenya: Completed their 35 over innings -resource percentage available =84.2%
England ‘A’: For start of a 35 over innings, 0 wkt lost, res. percent avail = 84.2%
For 30.3 overs gone, 4.3 overs left, 3 wkts lost: percentage left/lost =16.0%
Resource percentage available to England ‘A’ 68.2%

Target score calculation: 177 x 68.2 / 84.2 = ie 143.37 to win
Under the D/L method at 146 England ‘A’ win, by 3 runs (2.63 rounded up)

Case 1.5 ECB Axa Life League, 8 Jun 1997, Chester-le-Street, Durham

Durham scored 216 in their 40 overs. Sussex had lost 4 wickets and scored 39 runs in
10 overs. Rain interrupted play and 26 overs were lost. Play resumed with 4 overs
left for Sussex to bat.

Durham:

Completed their 40 overs innings: Resource percentage available R, =90.3%
Sussex:

At start of their 40 overs innings percent of innings available 90.3%

At stoppage, 30 overs left, 4 wkts lost: Percent left 54.9%
Atrestart, 4 overs left, 4 wktslost: Percent left 14.1%
Percent lost 40.8%
Resource percentage available to Sussex = 90.3 - 40.8 R,= 49.5%
Sussex target is 216 x 49.5/90.3 = 118.41, ie 119 to win
Sussex required a further 80 runs in 4 overs

If only one wicket lost and 35 runs on the board

At stoppage, 30 overs left, 1 wkts lost: Percent left 73.1%
Atrestart, 4 overs left, 1 wkts lost: Percent left 14.8%
Percent lost 58.3%
Resource percentage available to Sussex = 90.3 - 58.3 R, = 32.0%

Sussex target is 216 x 32.0/90.3 = 76.54, ie 77 to win
With 35 runs on the board Sussex would require a further 42 runs in 4 overs.

Suppose Sussex had lost no wicket and had 68 runs on the board

At stoppage, 30 overs left, 0 wkt lost: Percent left 77.1%
Atrestart, 4 overs left, 0 wkt lost: Percent left 14.9%
Percent lost 62.2%
Resource percentage available to Sussex = 90.3 - 62.2 R,= 28.1%

Sussex target is 31.1% of 216 x 28.1/90.3 = 67.22, ie 68 to win
With 68 runs already on the board Sussex would have won without any need for a
resumption in play

Note: The calculation would have been undertaken by the scorers according to the
way that D/L was implemented in 1997 using the table appropriate to a 40 over
match. The actual targets differed only in the decimal places compared with those
calculated above.
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APPENDIX 2

The D/L (Duckworth/Lewis) method of adjusting target scores in interrupted
one-day cricket matches

Table of resource percentages remaining - over by over

Overs left
60 to 0
Resource percentages remaining
wickets lost
overs left 0 1 2 3 4 5 6 7 8 9 overs left
60 107.1 98.0 87.9 76.5 63.8 50.0 37.8 26.5 16.4 7.6 60
59 106.4 97.5 87.5 76.3 63.7 50.0 37.8 26.5 16.4 7.6 59
58 105.8 97.1 87.2 76.1 63.6 49.9 37.7 26.5 16.4 7.6 58
57 105.2 96.5 86.8 75.8 63.5 49.9 37.7 26.5 16.4 7.6 57
56 104.5 96.0 86.4 75.6 63.4 49.8 37.7 26.5 16.4 7.6 56
55 103.8 95.5 86.0 75.3 63.2 49.8 37.7 26.5 16.4 7.6 55
54 103.1 94.9 85.6 75.0 63.1 49.7 37.7 26.5 16.4 7.6 54
53 102.4 94.3 85.2 74.8 62.9 49.7 37.7 26.5 16.4 7.6 53
52 101.6 93.7 84.7 74.5 62.8 49.6 37.7 26.5 16.4 7.6 52
51 100.8 93.1 84.3 74.1 62.6 49.5 37.7 26.5 16.4 7.6 51
50 100.0 92.4 83.8 73.8 62.4 49.5 37.6 26.5 16.4 7.6 50
49 99.2 91.8 83.3 73.5 62.2 49.4 37.6 26.5 16.4 7.6 49
48 98.3 91.1 82.7 73.1 62.0 49.3 37.6 26.5 16.4 7.6 48
47 97.4 90.3 82.2 72.7 61.8 49.2 37.6 26.5 16.4 7.6 47
46 96.5 89.6 81.6 72.3 61.5 49.1 37.5 26.5 16.4 7.6 46
45 95.5 88.8 81.0 71.9 61.3 49.0 37.5 26.4 16.4 7.6 45
44 94.6 88.0 80.4 71.5 61.0 48.9 37.5 26.4 16.4 7.6 44
43 93.6 87.2 79.7 71.0 60.7 48.7 37.4 26.4 16.4 7.6 43
42 92.5 86.3 79.0 70.5 60.4 48.6 37.4 26.4 16.4 7.6 42
41 91.4 85.4 78.3 70.0 60.1 48.4 37.3 26.4 16.4 7.6 41
40 90.3 84.5 77.6 69.4 59.8 48.3 37.3 26.4 16.4 7.6 40
39 89.2 83.5 76.8 68.9 59.4 48.1 37.2 26.4 16.4 7.6 39
38 88.0 82.5 76.0 68.3 59.0 47.9 37.1 26.4 16.4 7.6 38
37 86.8 81.5 75.2 67.6 58.6 47.7 37.1 26.4 16.4 7.6 37
36 85.5 80.4 74.3 67.0 58.2 475 37.0 26.4 16.4 7.6 36
35 84.2 79.3 734 66.3 57.7 47.2 36.9 26.3 16.4 7.6 35
34 82.9 78.1 724 65.6 57.2 47.0 36.8 26.3 16.4 7.6 34
33 81.5 76.9 71.4 64.8 56.7 46.7 36.6 26.3 16.4 7.6 33
32 80.1 75.7 70.4 64.0 56.1 46.4 36.5 26.3 16.4 7.6 32
31 78.6 74.4 69.3 63.2 55.5 46.0 36.4 26.2 16.4 7.6 31
30 77.1 73.1 68.2 62.3 54.9 45.7 36.2 26.2 16.4 7.6 30
29 75.5 71.7 67.0 61.3 54.3 45.3 36.0 26.1 16.4 7.6 29
28 73.9 70.2 65.8 60.4 53.5 44.9 35.8 26.1 16.4 7.6 28
27 72.2 68.8 64.5 59.3 52.8 44.4 35.6 26.0 16.4 7.6 27
26 70.5 67.2 63.2 58.3 52.0 43.9 35.4 25.9 16.4 7.6 26
25 68.7 65.6 61.8 57.1 51.2 43.4 35.1 25.9 16.4 7.6 25
24 66.9 64.0 60.4 55.9 50.3 42.8 34.8 25.8 16.3 7.6 24
23 65.0 62.3 58.9 54.7 49.3 42.2 34.4 25.6 16.3 7.6 23
22 63.0 60.5 57.3 53.4 48.3 41.5 34.1 25.5 16.3 7.6 22
21 61.0 58.6 55.7 52.0 47.2 40.8 33.7 25.3 16.3 7.6 21
20 58.9 56.7 54.0 50.6 46.1 40.0 33.2 25.2 16.3 7.6 20
19 56.8 54.8 52.2 49.0 44.8 39.1 32.7 24.9 16.2 7.6 19
18 54.6 52.7 50.4 47.4 43.5 38.2 32.1 24.7 16.2 7.6 18
17 52.3 50.6 48.5 45.8 42.2 37.2 31.5 24.4 16.1 7.6 17
16 49.9 48.4 46.5 44.0 40.7 36.1 30.8 24.1 16.1 7.6 16
15 475 46.1 44.4 421 39.1 35.0 30.0 23.7 16.0 7.6 15
14 45.0 437 42.2 40.2 37.5 33.7 29.1 23.2 15.8 7.6 14
13 42.4 41.3 39.9 38.1 35.7 32.3 28.2 22.7 15.7 7.6 13
12 39.7 38.8 37.6 36.0 33.9 30.8 27.1 22.1 15.5 7.6 12
11 36.9 36.1 35.1 33.7 31.9 29.2 25.9 21.4 15.3 7.5 11
10 34.1 33.4 32.5 31.4 29.8 27.5 24.6 20.6 14.9 7.5 10
9 31.1 30.6 29.8 28.9 27.6 25.6 23.1 19.6 14.5 7.5 9
8 28.1 27.6 27.0 26.3 25.2 23.6 21.5 18.5 14.0 7.5 8
7 25.0 24.6 24.1 23.5 22.7 21.4 19.7 17.2 13.4 7.4 7
6 21.7 21.4 21.1 20.6 20.0 19.0 17.7 15.7 12.6 7.2 6
5 18.4 18.2 17.9 17.6 17.1 16.4 15.5 14.0 11.5 7.0 5
4 14.9 14.8 14.6 14.4 14.1 13.6 13.0 11.9 10.2 6.6 4
3 11.4 11.3 11.2 11.1 10.9 10.6 10.2 9.6 8.5 6.0 3
2 7.7 7.7 7.6 7.6 7.5 7.4 7.2 6.9 6.3 4.9 2
1 3.9 3.9 3.9 3.9 3.9 3.8 3.8 3.7 3.5 3.1 1
0 0 0 0 0 0 0 0 0 0 0 0
overs left 0 1 2 3 4 5 6 7 8 9 overs left
wickets lost

© 1997, Frank Duckworth, Stinchcombe, GL11 6PS, UK, Tony Lewis and The University of the West of England, Bristol, UK



152



153

CONSTRUCTING A PLAUSIBLE TEST CRICKET SIMULATION USING
AVAILABLE REAL WORLD DATA

David Dyte'

Abstract

A basis is created for converting the averages of a batsman and a bowler into tables
of probabilities of different events (runs, dismissals, sundries and so on) for
individual deliveries where they play against each other. As a consequence of this
method, a simple way of comparing players across different eras in cricket is also
provided. A full cricket simulator created using this method is available for use on
the world wide web.

1. INTRODUCTION

Previous investigations by authors such as Clarke and Norman [1], Johnston [2], and
Chedzoy [3] have used simulated cricket matches to investigate the effects of such
things as tactical changes or umpiring decisions in real cricket matches. These
simulations usually involve constructing a table of probabilities of certain events for
each ball in the match. The table is generally altered according to whether or not a
specialist batsman is facing, and possibly by the run rate at which he is attempting to
score (for one day cricket simulation), but a greater level of detail is usually not
sought.

The Sim1 cricket simulator gains a degree of detail by taking into account the career
statistics of both the bowler and the batsman involved in each ball. The first step in
this process is to calculate the long term expected outcome for a given batsman-
bowler combination. Each ball is then treated as an independent trial with the same
expected outcome.

2. How Is IT DONE?

Averages are the principal statistic available in the cricket data, and are used here as
the main basis for constructing a table of probabilities for the outcome of a given
delivery. Cricket statisticians have a distinct advantage here over those constructing
statistics for other sports. An average is a simple ratio of postitive events for the
batting team (runs) to positive events for the bowling team (wickets). Such simple
and intuitive measures of player performance are not so readily available in, say,
baseball. Lindsey [4], James [5], and Thorn and Palmer [6] have all made increasingly
complex attempts to quantify the contribution of players to their baseball teams.

School of Mathematical Sciences, Swinburne University, Hawthorn Vic 3122
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Before we attempt to combine the averages of batsman and bowler for simulation,
we require knowledge or an estimate of the overall averages in the contests where
the two competitors acquired their averages. Once this is known, a relative player
quality may be calculated for batsman and bowler. The adjustment from simple
average to relative quality is made because of the sometimes severe differences
between conditions in players’ careers. Suppose we wish to compare the test careers
of Sachin Tendulkar and Victor Trumper. Tendulkar’s average of 54.8 and
Trumper’s 39.0 scarcely seem comparable unless we consider the conditions under
which each batsman played. Similar adjustments could be made to compare, say,
Syd Barnes’” and Curtly Ambrose’s achievements as bowlers.

Simply,
_ Abar
Qb“’ - Ebat
A ow
Qbowl = Eb l

bowl

where Q denotes relative quality, A denotes player’s average, and E denotes the
average over the era (or for the competition) in which the individual played. Note

that for bowlers, a lower relative quality is better. Also note that E, 6 #E, , for

reasons mentioned below.
So, for Trumper and Tendulkar’s batting qualities, we have

54.84

. =—=1.69
Qbat, Tendulkar 3 2 ) 3 8

39.04
Qbat,Trumper = ﬁ = 146

So we give Tendulkar the edge. Don Bradman’s relative quality of 3.02 appears
somewhat impassable, however.

The relative quality of the player may then be multiplied by any suitable figure
desired, to simulate cricket in particular conditions. To estimate a player’s average
had they played in the era of Trumper, multiply by 26.8. For Tendulkar’s era,
mutliply by 32.4. This method makes sense in a neat, intuitive way.

Gould [7] has found that players have tended closer to mean performance in baseball
with time and increasing overall excellence in the game, which may indicate a benefit
for discounting the relative quality of players from early eras somewhat. Such an
analysis is yet to be performed on cricket data, however.

The picture is a little more complex than this, however. In viewing a cricket match as
a series of head to head confrontations between batsman and bowler, some
adjustment to the batsman’s average does become necessary. Certain dismissal types
such as run out or handled ball are not credited to the bowler, regarded instead as
being solely a product of the batsman’s error. Also, these types of dismissal may
occur at either end of the pitch, not only to the striker. Hence, true average for this
head to head calculation requires their removal from the batsman's statistics at this
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point. They will be included at a later stage in the algorithm. This procedure may
either be performed directly from the record of the particular batsman (preferable) or
by using a generic rate of approximately one dismissal in thirty being of this type.

Similarly, since the 1983-84 season wides and no balls have accrued to bowlers'
analyses. For the purposes of calculating head to head averages against a batsman,
these figures must be removed also for modern players and reintroduced later.
When sundries are introduced later, generic or reputation based figures must be
substituted for older players where real data on wides and no balls is not available.

So,

1-R
Ql;ar _ Qbatg — era)

o _ Qbowl(1 - S)
bowl —
o 1_Sera

where Q" denotes the true quality in the head to head confrontation, R is the
estimated proportion of non-bowler dismissals, and S is the estimated proportion of
runs accrued to the bowler in sundries. Note, S = 0 for players prior to 1983. Now
we have statistics which relate solely to the direct confrontation of batsman and
bowler.

The heart of the matter is in combining batsman and bowler quality into a single
figure. The philosophy behind the Sim1 simulation is this: a batsman twice as good
as all comers will perform twice as well as all comers against a particular bowler; and
a bowler with an average 0.7 times that of all comers will dismiss a particular
batsman for 0.7 times the runs all comers would. This is based on the same kind of
intuition as the relative quality ratings.

Clearly, then,
Qc"omb = Qb,ar ’ Q[:owl

gives us the relative quality of the head to head confrontation of the two players. We
need only to multiply by the batting average for the era in which we wish the match
to take place, suitably adjusted, and we have:

ar . Leomb_Epar

comb ~ 1-R,,,

which is the long term expectation we require. Here, R,,, is the proportion of non-
bowler dismissals in the era the game is played. Insufficient data investigation has
been performed to test whether the proportion of these types of dismissal has altered
significantly with time. An eqivalent calculation would be:

A;omb = Q;omb E bowl (1 - Sera )

which is easier for earlier eras, as S,,, will be 0.

Run rates or strike rates may also be taken into account if available, otherwise
plausible results may be obtained by using a generic run/strike rate or simply
estimating figures based on impressions of the players involved.Just as a combined
average may be obtained first by comparing against the average for an era, then by a
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multiplicative method, the same may be achieved for scoring rates. For want of
better data at the present data source (the CricInfo web site at www.cricket.org) the
Sim1 simulator presently operates with a fixed run rate, which is user specified. The
average over all test cricket since World War I is approximately 2.4 runs per over, or
0.4 runs per ball.

Using a calculated head to head run rate will give better results than a simple generic
run rate, since it provides for bowlers of varying economy (Brian Statham versus
Devon Malcolm), or batsmen of varying speed (Chris Tavare versus Viv Richards).

It is apparent that if a team has one outstanding bowler, and others of lesser ability,
the opposition’s expected score will be reduced if the lesser bowlers concede runs at
a slower rate. This leaves a greater share of all events (runs and wickets) to the better
bowler, who also has the highest wickets / runs ratio. This is part of the basis for
New Zealand fans’ fond memories of Ewen Chatfield’s efforts as an economical foil
to star bowler Richard Hadlee.

However we arrive at the number, given some estimate of run rate per ball, r, we
may then proceed to partition the event space for a single ball into probability of
dismissal by bowler and some (arbitary) distribution of scores giving the calculated
run rate.

Pr(wicket)= p,, = A'r

comb
Pr(lrun)= p, = 0.264r
Pr(2runs)= p, = 0.1r
Pr(3 runs) = p, =0.024r
Pr(4 runs)= p, = 0.1r
)
)

Pr(5runs)= p; = 0.0008r
Pr(6runs)= p, =0.01r

Partitioning the dismissal event space into different types of dismissal can be done in
a number of ways. For simplicity (and for want of good data) the simulator
presently uses one of two fixed distributions according to the speed of the bowler.
Analyses such as that performed by Croucher [8] may provide more accurate results
if required.

Additional calculations must now be made in order to include run outs and sundries.
Sundries other than no-balls may be placed into the “no runs or wickets” partition of
the event space without damaging the balance already achieved. Run outs (and
other, more exotic dismissals such as handled ball or obstructed field) must,
however, be included as a separate event (occurring after the initial event) with
probability adjusted to reflect the chance of the non striker being run out and the fact
that certain events (boundaries) preclude any run out occurring. No balls complicate
matters still further.

For the sake of brevity, we shall now assume no balls are exactly the same as other
sundries and no other run scoring events occur with them. If no balls are to be
treated correctly, the calculations become considerably more tedious.
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Firstly, we define
Do zl_pw _zpruns

runs

then, if p, is the probability of one sundry given that no runs were scored from the
bat, and so on, we can say:

_ 0.36rs
P = Po (l—s)
_ 0.13rs
P Do (1 - s)
_0.02rs
P he=5)
_ 0.08rs
P =)

Where s is the proportion of runs we assign to be scored in sundries. Again, this will
vary by era. Note that s # S, the proportion of bowler’s runs accounted for by wides
and no balls. A typical value for s is around 0.05. The relative proportion of
numbers here is quite arbitary, due to a lack of data. Type of sundries is, like
dismissal type, chosen from two fixed distributions depending on bowler speed.

The formula for run out probability is a complex one. We assume the bowler’s
quality has no part in the probability of a run out (or other non-bowler dismissal),
and allocate a chance to the non-striker also. Defining p,, as being p, if the non-

striker were facing, we have the probabilities of run out given no other dismissal
type, and no boundary having occurred:

p _ prstrk

ro,strk — '

- 20 powi (1 — Ry ) (Po +pPitpPytp3— Pops4)
— pannstrk

pro,nstrk -

20 howi (1 — Ryt ) (po + Py + Py + D3~ PoPsu)

Note, we have assumed no-one will be foolish enough to be run out after a 5 is
scored, assuming it is all run.

Apart from the construction of a table of outcomes for an individual delivery, some
outside factors come into play. Clearly, in cricket, a captain cannot bowl his two
lowest average bowlers all day. Some method of fatiguing and recovering players is
required in order to guarantee a fair distribution of overs amongst the bowlers, in
that not every bowler will be available to bowl all the time. In the Siml program, a
simplistic method is employed revolving around stamina which largely depends on
bowler speed. A more sophisticated system, which properly takes into account
breaks in play, is in planning.



158 David Dyte

3. WHAT IS MISSING FROM SIM1?

The effect of differing standards of fielding has not been included in this simulation.
There are two important reasons for this. Firstly, one might argue that if we were to
match the present day Zimbabwean team against the 1984 West Indians, that the
Zimbabwean bowlers should suffer some sort of relative disadvantage because of
their team’s poorer fielding standard. The important point is, however, that this
effect is already reflected in their averages. Unlike in baseball, bowlers do not
receive any credit for dropped catches where they may have taken a wicket. So
Heath Streak’s average, good though it is, already includes the effect of Zimbabwe’s
poor fielding record. Secondly, the data for such events as dropped catches is sparse
at best, and will do little to improve the simulation as it currently stands, whilst
adding a whole raft of new calculations in order to be correctly implemented.

There are many commonly accepted facts of cricket life as yet unaccounted for in this
simulation. These include such phenomena as ground effects, new ball effects, pitch
wear effects, attacking or defensive tactics from either team, and so on. Again, where
data is available such things may be estimated directly, otherwise generic effects or
reputation based effects may be used. Some of these effects will be included in a
future update.

Kimber and Hansford [9] have criticised the use of simple averages as a defining
statistic for batsmen, and have constructed a more complex formula relating to the
hazard of dismissal as a function of the batsman’s present score, pointing out that at
very low scores batsmen appear more likely to be dismissed than later in their
innings. This would appear to point to two serious flaws in this simulation: each ball
is not in fact a trial independent of the batsman’s current score; and simple averages
are not appropriate for predicting a batsman’s true outcome. However, the effects
noted by Kimber and Hansford are slight, and in any case require a great deal more
data than the amount required to operate the simulation in its present form.

The Sim1 cricket simulator has been rendered in the Java programming language
and may be played via the world wide web. It can be found
http:/ /www.swin.edu.au/sport/ .
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HOW FAIR IS THE AFL DRAW?

Stephen R. Clarke’

Abstract

This paper discusses the fairness of the AFL home and away draw. The use of a
linear model to estimate team ability and home advantage is shown. The degree of
difficulty inherent in the draw is estimated by calculating the average standard of
the opposition. However an extra term is necessary to allow for better teams
playing weaker than average opponents. The technique is demonstrated using
final ladder position as a measure of team ability. The draw difficulty is shown to
be different for different teams, and the bias does not even out over the years.
Another method compares the expected final ladder position under the actual
draw with the fair position. The efficiency of the draw to reward better teams with
higher final ladder position is estimated via a simulation. This shows the huge
amount of variability due to randomness inherent in the League draw.

1. INTRODUCTION

All sports are affected by the overall rules of the competition. The Australian
Football League along with individual clubs makes many decisions affecting the
running of the competition. These are often based on financial aspects such as to
maximise crowds or television exposure, but they also affect teams' chances of
success in the competition. They range from relatively minor changes as in moving
the venue of a single match or moving the home ground of a club for an entire
season, through to decisions having major ramifications such as organising an
unbalanced draw or alternative play-off structures. What effect do these decisions
have on a team's chances? In the past these have not been quantified. Clarke [1]
quantified the effects of the various final systems on teams' chances. Here we look at
various methods for measuring the fairness of the home and away draw.

A major drawback of the AFL competition is that the draw is not balanced. In AFL
football, 16 teams play 22 rounds, so teams do not play all other teams twice. The
draw is unbalanced with respect to strength of opposition (each team plays a
different set of opponents twice) and with respect to grounds (teams play a different
number of matches on their home grounds). The introduction of interstate teams has
seen an increase in the home advantage, so the difficulty of a match against an
interstate opponent depends very much on where it is played. While the general
public recognise this is inequitable, again it has never been quantified in a proper
manner. At the very most a football writer may tabulate the number of times each
team plays a weak team, or a finalist from the previous season, but never is it done at
the end of a season when the true strengths of the teams are better able to be
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estimated. This unfairness will not necessarily even out over the years. For example
at one time the draw was made on the basis that the top teams in one year played
each other twice the following year. Thus there was an ongoing bias in the draw.

2. MEASURING TEAM ABILITY

The end of year ladder is usually used as a measure of a team's success. This is often
equated with their ability. However this presupposes that all teams had an equally
difficult task. To correctly measure a team's playing level, strength of opposition
must be allowed for, and this is often difficult to assess because the draw is not
balanced.

Mathematical models can be fitted to estimate team ability and home advantage.
Harville [2, 3], Stefani [4, 5, 6] do this for American football, Stefani and Clarke [7]
for Australian Rules, Clarke [8] , Clarke and Norman [9], Kuk [10] for English soccer
and Harville and Smith [11] for American basketball. Clarke [12] has shown that in
Australian rules football, models allowing different home advantages for different
teams are justified, so we model the winning margin wj; when home team i plays
away team j as

wij = Ui +hi - u; +ejj (1)

where u; is a measure of a team's ability, h; is team i's home advantage (HA) and e;; is
random error. Since the u; are relative, we can require they sum to zero. The u;, h;

can be found using least squares, and the results for 1995 are given in Table 1 along
with the final ladder.

Since teams have traditionally played half their matches at home we might use u; +
0.5 h; as a measure of a team's success through the year. This is in line with Harville
and Smith [11] who suggest an equivalent measure for a team's overall performance
level in relation to the average performance level. In Table 1 the rank order of the
teams on this measure is also given. Note that some teams (Richmond, Footscray)
have done better than they deserved, others (Collingwood, Sydney) have done
worse. This may be due to draw difficulty, or just an effect of the large random
variation due to teams winning or losing close matches.

For 1995, the measure u; + 0.5 h; has a correlation of 0.90 with premiership points and
0.98 with percentage. Figure 1 shows a scatter plot of percentage against u; + 0.5 h;
and demonstrates the extremely close fit. Thus the u; and h; together give a good
measure of a team's overall success through the year, but separately give a measure
of how much contribution the effects of team ability and HA made. It also suggests
that percentage is a better measure of a team's average performance level than
premiership points, and may be a good surrogate to use for average strength of
opposition rather than go to the trouble of fitting u; and h; by least squares.



How Fair is the AFL Draw?

Table 1

Actual final ladder for 1995, with team ratings and has shown

163

Team Prem | Percent. | Rank by u h u +.5h | Rank by
Points ladder u+.5h
Carl 80 137.8 1 26.2 4.9 28.7 1
Geel 64 131.9 2 26.2 -4.9 23.7 2
Rich 62 107.9 3 0.9 7.0 4.4 6
Ess 60 127.6 4 26.9 -7.5 23.2 3
WC 56 122.9 5 6.6 26.9 20.1 4
NthM 56 114.8 6 225 | -22.1 11.5 5
Foot 46 91.5 7 -2.3 -6.0 -5.3 13
Bris 40 95.3 8 -11.1 19.9 -1.2 10
Melb 36 100.7 9 3.8 -6.6 0.5 8
Coll 36 96.8 10 -1.6 5.6 1.2 7
Adel 36 80.1 11 -314 | 28.7 -17.1 14
Syd 32 100.7 12 -4.4 8.0 -0.4 9
Frem 32 92.8 13 2.3 | -145 -4.9 12
StK 32 80.3 14 -15.3 -6.8 -18.7 15
Haw 28 94.0 15 -8.3 8.7 -4.0 11
Fitz 8 58.2 16 -41.0 | -13.4 -47.7 16
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Figure 1: Percentage versus ui + 0.5 hi for 1995



164 Stephen R. Clarke

3. FAIRNESS OF THE DRAW - AVERAGE STRENGTH OF OPPONENTS

Once ratings for teams are established, it is relatively simple in principle to quantify
the unfairness of the draw after the season. Since the ratings of an opponent are a
measure of the difficulty of that match, summing the ratings of the opponents of each
team gives a measure of the difficulty of the draw for that team. (The home ground
advantage of opponents could also be included as this contributes to the draw
difficulty). This is equivalent to the approach of Leake [13] who suggested the
average rating of opponents as a measure of schedule difficulty. However there are
problems with this approach. Since the good teams do not play themselves, they will
appear to have an easier draw than the others. Thus even in a balanced competition
this method would give a measure of unbalance. For this reason we need to subtract
the average strength of all possible opponents. Thus we are measuring the excess
strength of the actual opponents over the average strength of all possible opposition.
We show this is equivalent to adding a proportion of a team's own rating to account
for the above bias.

If the measure of team ability in an N team competition is u;, i = 1 to N, where Zu; =0,
then opponent j will exceed the average strength of all possible opponents of team i

by
24 )
u —L— =y ——t—=y +—— (2)
JITN-1 T N-1 T N-

Summing this for all opponents is a measure of the total strength of opposition to
team i.

While we could use the us as derived earlier, or better still u; + 0.5 h;, there are
advantages in using a measure that the general football follower would understand.
Since percentage is highly correlated with u; + 0.5 h;, this may be a good choice. Here
we use a popular measure of a team's ability, final ladder position. This incorporates
both team ability and some measure of home advantage. Unfortunately it also
includes a component due to the factor we are measuring - draw difficulty, but we
bear with this in the interests of having a simple measure. Table 2 was obtained by
applying (2) using the ladder ranking above the mean at the end of the year. Because
a low number indicates a high ranking and strong opposition, a negative total
indicates the draw was more difficult than average, a positive number easier than
average. Note that during the year 1986 all teams had a balanced draw, and this is
true for several years prior to that. In other years, the difference between highest and
lowest is generally about 35. This is clearly a significant amount, particularly for two
teams in a similar position on the ladder, where the difference cannot be attributed to
the different rankings of the two teams. For example in 1988, Geelong, one position
on the ladder ahead of Richmond, had a more difficult draw by 36 ranking points.
That is the equivalent of playing the top three teams instead of the bottom three
teams. In the same year West Coast finished one spot above Melbourne with the
same number of wins. However Melbourne's draw was 29 ranking points harder
than West Coast. A similar draw could have given Melbourne three extra wins and
put them second on the ladder. (They actually did win their way through to the
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grand final). In 1995, the two teams with the hardest draw, Melbourne and
Collingwood, both missed the final eight by one game, even though they had better
percentages than Footscray who finished seventh and Brisbane who finished eighth.
Again the difference in their draw difficulty could easily account for the difference.
It is clear that the degree of imbalance that exists in the draw is enough to have a
significant effect on the final ladder outcomes. Individual clubs should also look at
their draw difficulty in assessing the measure of success they have achieved through
the year.
Table 2

Measure of draw difficulty for AFL teams, 1980-1995

Year
Team | 86 | 87 | 88 | 8 | 90 | 91 | 92 [ 93 | 94 [ 95 |Sum
Adel 9 | -3 4 | -7 | -1 |-18
Bris 13 | 9 |-14 8 | -6 [-10 2 118 | -5 | 1
Car 0 [-10 | 12 519 1|-5]|-4 0 | -3 [-7 |21
Coll 0 0 6 3 | -7 0 [14 |12 | -6 |-17 |-19
Ess 0 | -2 2 |17 | 4 6 (-14 | 4 | -1 9 9
Fitz 0 [-12 [-12 | 12 2 | -3 4 7 |10 | 4 5
Foot 0|9 [12 | -7 0 5 8 | 9 [-11 6 | 4

Frem -8 -8

Geel 0 [-11 [-20 | 13 3 1 6 (-14 | -6 |19 | -8
Haw 0 0 [13 |14 | 4 9 | -5 2 | -6 | -6 |16
Melb 0 | 16 |-19 |[-12 5 4 | -2 9 | -2 [-16 |-17
NthM 0 5 [-12 |-16 1 1 11201 9| -1 |9
Rich 0 3 [16 | -7 3 5 6 4 3 |15 | 47
StK 0 |14 | 9 [-14 | 9 9 | 9 3 | 16 4 4
Syd 0 |-1 |10 |12 4 | -3 6 [-12 | 12 9 | 38
WC -6 | 10 | -6 7 |-14 2 0 | -8 3 |-12
No.of |12 |14 |14 |14 |14 |15 |15 |15 |15 |16
Teams

Clearly the draw difficulty does not even out through the years. Richmond and
Sydney appear to have had a long run of good draws, while Carlton has had a long
run of more difficult draws. Many AFL clubs have criticised the level of financial
support given to Sydney. They have also, it appears, received support from the
schedule.
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4. USING A COMPUTER PREDICTION TO ASSESS FAIRNESS OF HOME AND AWAY
DRAW

Clarke [14, 15] describes a computer prediction model that updates ratings and home
advantages using exponential smoothing. The program includes a component that
estimates a final ladder, and a simulation that estimates the chances of teams
finishing in any position. This can be used to obtain alternative estimates of the
effects of the draw on the success of clubs. This gives a measure of the effect in
ladder positions. Any sporting competition is designed to produce a winner, and the
rules should ensure the expected final positions reflect the abilities of the
participants. The ladder prediction model provides a tool to investigate this. Given
the ratings of each team and the draw it provides the expected finishing position of
all teams. This takes into account not only the opponent, but the ground on which
the matches are played. While this is usually used at the start of the season for
forecasting, it can be run at the end of the year using the average ratings the teams
actually achieved. The expected ladder position can then be compared with the team
ratings. In a competition balanced for quality of opposition and HA, the expected
final ladder would be roughly in the same order as u + 0.5h. Variations from this
reflect unfairness in the draw. For 1995 this resulted in a predicted order in good
agreement with the fair order. At most there was one game difference between
expected and fair ladder position.

We might also wish to investigate the extent to which the final ladder position is
affected by random variation. A season of football has a large random element, and
most supporters recognise that luck plays some part in the success of their club. Also
club success is not a linear function of ladder position. For example, obviously two
seconds would not be equivalent to a first and third. For both these reasons it is
appropriate to look at the probabilities of teams achieving certain goals. In racquet
sports, for instance, this has resulted in the concept of efficiency of scoring systems,
where the length of matches is traded off against the probability of the better player
winning (Miles [16] ).

While it is outside the scope of this paper to investigate alternatives, we do want to
give an idea of the effects of random variation on the final ladder. The simulation
model can be used to give an indication of its extent. Table 3 is the result of
simulating the 1995 season 1000 times using the average rating for the teams as initial
ratings. The table shows the number of seasons the team finished in the given
position, and has been sorted in order of u + 0.5k, i.e. in the order that a fair draw
should produce. While the most likely position was generally close to the fair
ranking, the probability of this was often quite low. The table shows the huge
variation possible in a season of football and demonstrates the dangers in putting too
much emphasis on the final ladder position as a measure of the team's performance.
It is possible for almost any team to finish anywhere from last to first due to the
random effects. The range within which a team was an 80% chance to fall was about
four positions for the very best and worst teams, up to about 10 positions for some of
the middle teams. This dependence on chance can be demonstrated by looking at
individual matches. In round 9, Adelaide beat Hawthorn 9.06 to 7.16 by two points.
Had just one of Hawthorn's 16 behinds been a goal, Hawthorn's final ladder position
would have been three places higher and Adelaide four places lower. In contrast, the
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u; and h; for those teams as developed by linear models or exponential smoothing
would have hardly altered at all. For this reason, measures obtained by model fitting
are a more accurate reflection of a team's performance through the season.

Table 3

Chances in 1000 of ending in any position after home and away matches

Final Ladder Position
Team [ 1| 2| 3| 4| 5| 6| 7| 8| 9|10|11]| 12| 13| 14| 15| 16
Car |302]218| 136/ 113| 83| 63| 35 26| 11| 6| 3| 4 O 0 0 O
WC [184]|189| 156|139 91| 77| 63| 32| 25| 18| 14| 5[ 5 1 1] 0
Geel |[236]185|170| 121 93| 59| 52 31| 22| 11| 7| 5 6] 2[ 0 O
NthM |[103| 114] 124| 114| 125/ 104| 88| 66| 41| 43| 33| 21| 9| 9| 5 1
Ess 107| 145| 163| 151| 123| 81| 76| 51| 40| 11| 18| 13| 10 9] 2| 0
Melb | 18| 38| 53| 68| 82| 106 98| 98| 95| 91| 66| 59| 59| 49| 18] 2
Rich 26 | 53| 73| 90| 117)114| 95|110] 79 91| 37| 46| 30| 24| 14| 1
Coll 10| 15[ 29| 36| 55| 60| 87| 73| 109 87| 105 93| 90| 95| 48| 8
Foot 3| 5| 21| 39| 36| 66| 93| 86[102| 99|113|107| 95| 71| 53| 11
Haw 2| 13| 27| 44| 50| 70| 78| 110 78|107{ 91|103| 76| 76/ 61| 14
Adel 2| 10] 13[ 31| 50| 54| 68| 83|107| 93| 112] 90| 110 101| 63| 13
Syd 4| 6] 15| 22| 36| 59| 59| 85| 99| 87|114|110| 104| 104| 76| 20
Bris 1 4| 10| 16| 24| 36 48| 56| 68|100(102|102| 147 126|137 23
Frem 1 3 23| 33| 39| 62| 59| 93| 94| 131|129|137| 136| 45
St. K 1 2 4 7] 12 18] 21| 30| 63| 62 88| 102| 116| 152|241| 81
Fitz 0 0 O Oof Of o 1f 2| 11 3| 9| 14| 44|145]|781

5. CONCLUSION

The AFL draw is clearly not balanced for strength of opposition nor home advantage.
The difference in the degree of difficulty faced by some teams is the equivalent of
playing the three top teams rather than the three bottom teams. This bias does not
even out over the years, and some teams appear to be consistently advantaged or
disadvantaged. However there is some evidence that the bias appears to make at
most a difference of one place in the expected and fair ladder position. The inherent
variability in the draw due to randomness far outweighs this. An average team's
actual finishing position can be anywhere from top to bottom due to the inherent
randomness of football.
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PLAYER ASSIGNMENTS IN AUSTRALIAN RULES FOOTBALL

Nikoleta Tomecko' and Jerzy A. Filar'

Abstract

This paper deals with work in progress on an application of operations research
and statistical techniques to Australian Rules Football.

The Analytic Hierarchy Process is discussed as one of the ways for extracting
expert knowledge from the coach and the selectors about the importance of game
skills in each position. It is further proposed that this knowledge is used to
construct “performance functions” which represent the expected performance of
each player in each position and that these are exploited as inputs to the
Assignment Problem. Finally, future research directions are presented.

1. INTRODUCTION

Australian Rules Football is the national winter sport of many Australians. An
“Aussie rules” match consists of four quarters, 30 minutes each. Each side has 18
players on the field at any one time. Scoring consists of goals, worth 6 points each,
(when the ball passes between the two major goal posts) and “behinds”, worth 1
point each (when the ball passes between a major and a minor post or it hits one of
the major posts). The team with the higher score at the end of the match wins.

All of the major AFL teams have whole teams of “statisticians” who score all the
team’s matches, as well as the opposition’s. This suggests that the clubs themselves
recognise the need to be selective about both the statistics that they are going to
collect, and about the methods of analysing the data so collected, to get the
maximum possible benefit. However, little mathematical modelling is currently
being done.

This project was run jointly with the Traralgon Football Club. The aim of the work is
to assist an Australian Rules Football coach in his decisions. This involves assisting
the coach in the selection of players, monitoring player performance and allocation of
players to positions. It is not the aim of this work to devise an automated system
which might, at some future stage, aspire to replace the coach. The aim is merely to
capture some of the coaches’ intuition and knowledge to produce a decision-support
system that would simplify their decision-making tasks.

It is envisaged that simple statistical methods will be utilised to assist the coach with
compiling the statistics and monitoring the performance of players and the team.
When allocating players to positions, it is proposed that a classical operations
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research method, called the “assignment problem” be employed, while a technique
called Analytic Hierarchy Process be used in conjunction with statistical results to
evaluate the players’ suitability for a position and in the process to supply the
coefficients in the assignment problem.

If the system performs as well as might be expected it may be possible for the coach
to enter the data of an opposition’s “reshuffle” into the system and for an
appropriate response to be calculated in “real time”.

If this proves to be a successful method of assisting the coach in assigning the players
to positions, it is possible to modify the method to adapt the system to any team
sport where the positioning and allocation of individual players and the interactions
between them is important.

2. PERFORMANCE EVALUATION

If there were a known “performance function” that accurately predicted each
player’s performance in every possible position on a football field, then the problem
of optimal assignment of players to positions would be the classical (and well-solved)
operations research problem known in the literature as the “assignment problem”

(Murty [1]).

However, such a performance function does not exist. Hence, the focus of the project
is the evaluation of each player’s suitability for each position on the field. Of course,
this gives rise to a large number of possibilities (about 6,402 trillion in fact). In
practice, each player is likely to be considered only for a few of the positions,
nominated by the coach and/or the selectors.

The method which is going to be used to construct the performance evaluation
function has to satisfy several criteria.

1. It has to be easy to use as the coach and the selectors cannot afford to devote a
large proportion of their time interacting with the system.

2. The method has to be readily understood, so that they are clear on how it can be
used in their decision making process and are not reluctant to take advantage of
its capabilities.

3. There has to be the potential to use physical characteristics and training scores of a
player, or his past performance data, or both.

4. The method has to be able to accurately represent the situation in that for every
position there are a number of possible criteria that play a role. For example, a
ruck has to be tall, have good ball skills and be able to run fast. A full forward has
to have all of those abilities and in addition he must be good at marking and
scoring goals.

Ball skills of a player could include his kicking abilities, which includes both accuracy
and distance, marking and handpassing the ball to team-mates. Also, not all of the
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mentioned abilities are of equal importance, in fact their importance varies with the
position that is being considered.

This points to multiple-criteria decision-analysis techniques, and the number of
“nested” criteria to be considered in the function suggests a possible hierarchical
structure. To illustrate this on the full forward position, suppose that the broad
attributes are as follows: ball skills, form, physical characteristics. Each of these
attributes may consist of more sub-attributes. Figure 1 schematically illustrates this
structure for the full forward position.

For instance, in this hierarchical model the sub-attributes are:

games the number of games the player has played

AFL the level of AFL experience of the player
position the experience of the player in the position
distance the player’s kicking distance

accuracy the player’s kicking accuracy

physical the player’s physical form

psychological the effect that the player has on the other players

l Best full forward |

criteria I experience I | height | Ikicking | [ speed | ‘ current form|

subcriteria lgamesl IAFL | Ipositionl |distanE| |accuracy| I physical Hpsychologica]

alternatives Mark James Martin Steve

Figure 1. Hierarchical Structure for full forward

This is consistent with the way the hierarchy of attributes are constructed in the
Analytical Hierarchy Process, see (Saaty [2], [3]). AHP also satisfies our other criteria
in that the pair-wise comparisons being performed are reasonable since it is desirable
to compare each player to every other candidate for that position. It is also very
easily interpreted in terms of the football problem, because the priority vector is
normalised, which means that the weights associated with attributes and sub-
attributes can be interpreted as percentages.

The AHP also allows for the option of entering data, so training scores or past match
statistics can be included in the process of determining the weights. Another bonus
of the AHP approach is that the system is easily “personalised”, in that the weights
for the attributes and hence the final scores for the player’s performance are all
dependent on the initial pair-wise comparisons. This means that even given the same
initial hierarchy, two different coaches would typically assign different weights to
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attributes, hence it would be possible for different players to receive the top
performance rating.

For example, suppose that for the full forward position, the top level priority matrix,
(based on the pair-wise comparisons of the attributes) is as follows

speed /4 1/5 1/4 1/5

1
height |4 1 2 1 |1
A =experience |5 1/2 1
4
5

2 .
Ly2 1Y
1 3 4

form

kicking
The priority weights assigned to these attributes, based on A, are given by the vector
w=(0.049 0250 0.181 0.164 0.375).

Next, the process is repeated with pair-wise comparisons performed for the branches
at lower levels of the hierarchy, for the full forward. The whole hierarchy including
the weights for all levels is illustrated in Figure 2.

‘ Best full forward ‘
0.1 .25 0.37%5 49 64
criteria Iexperience \ [ height l |kicking | | speed | ’current forml
0. 0.18 743 0.284 0.716 0.6 4
subcriteria | gamesl |AFL | |position| |distance| Iaccuracy I |physical| Ipsychologicall
alternatives Mark James Martin Steve
Figure 2. Hierarchical structure and weights for full forward

Similar hierarchical models can be formulated for all the positions on the field; each
one consisting of attributes important in that position.

Once a hierarchy has been designed for each position and all the appropriate weights
assigned, players are simply compared on each of the attributes. An overall score is
assigned to each player according to the hierarchy for each of the positions that they
are thought to be suitable for. This results in a single performance score for each
player for each position that they are being considered for. Hence the performance
indicator for player i in position j will be denoted as per(i, j).

2.1 Scales

Even though each player is not considered for every position, this method could still
involve a lot of comparisons. In addition to this, these scores have to be re-evaluated
after every match to account for the latest performance figures as well as whenever
any one player’s situation changes (say, when a player becomes injured).
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To overcome this, it is proposed that the “ratings” feature of AHP is utilised. This
involves designing “scales” for each of the attributes. Then pair-wise comparisons of
the levels of scales are performed and each level of the scale is assigned a score
according to these comparisons. Then each player is simply given a rating or a score
on each attribute according to the corresponding scale.

This greatly reduces the work involved since there is no need to perform all pair-
wise comparisons after every match to update the data. Instead, any ratings that
have changed are re-entered. Similarly, if any individual’s performance score
changed previously, every AHP hierarchy which included that player had to be re-
evaluated. In the case of ratings, only the rating which has changed needs to be
entered again, and the re-evaluation of the hierarchy is done automatically.

3. ALLOCATION OF PLAYERS

Once the performance functions have been designed, a linear programming
formulation of the assignment problem can be invoked, to actually assign players to
their positions. Recall that the assignment problem is of the form:

max ), > per(i,j)x,,
i j
subject to:

> x, =1, where j=1,2,...n
2 Xy, = 1, where i = 1,2,...m
j

X, 2 0, i=1,2,...m and j =1,2,...n
where the functions per(i,j) are the performance functions constructed using the AHP.
An important feature of this linear program is that all basic feasible solutions are
integer valued, thus there is no need to impose integrality constraints. Namely, every
x; will be 0 or 1, with 1 corresponding to player i being assigned to the j-th position.
Efficient special purpose algorithms are known for this problem (Murty [1]).

The constraints ensure that only one player is assigned to each position and that each
position is only given to one player. Other convenient constraints could be added so
that the problem takes full advantage of the structure of the matrix, for example no
player with a score of 0 for any position will be assigned that position, etc. With the
extra constraints we have to return to a 0-1 integer formulation, which should still be
tractable numerically.

3.1  Opposition’s Assignment of Players

It is common practice in most team sports to observe how the opposition is playing,
watch for and try to pinpoint their strategies, and respond in a manner that lets the
team capitalise on the situation (or at least to minimise the team’s disadvantage).
Australian Rules Football is not an exception in this case. A great deal of effort is
being devoted by the top teams to monitor and score not only their own players’
efforts, but those of the opposition’s as well.
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This means that the coach has to constantly observe both sets of players and re-
evaluate his options based on how they are performing. Then he has to respond by
changing the strategy or trying to assign his players to make the most of the
situation. A lot of this effort is dedicated to the allocation of opposition’s players and
to finding an appropriate response.

This section presents and discusses some methods that can be employed to exploit
the information on opposition’s players collected during matches. This information
can be either in quantitative form (data) or qualitative form (coach’s impressions). It
is proposed that this information is used to estimate the effect each player has on the
performance of the opposing player from our team.

In real life the coach will not know the opposition’s assignment for certain until the
team is out on the field before the first bounce (sometimes not even then). However,
most of the time there are a lot of very good “educated guesses” made by either the
opposing team’s officials or by sports commentators about how the teams are going
to assign their players. Some sports commentators and reporters have, in fact, made
an art-form of guessing and/or predicting the player allocations for a big match that
is coming up. Any of these could potentially be used as the initial “best guess”, to be
altered once the selection becomes known.

This gives rise to an additional complication: ideally, the system would operate fast
enough to be useable in “real time”. That means that on the side-lines, or in the
coach’s box, when the coach/selectors see a reshuffle of the opposition’s players or a
new player coming on the field, they should be able to simply enter this information
into the system and obtain an optimal response.

The assignment problem discussed previously is easily modified to include the
opposition’s players and their respective positions. The new linear program is of the
form:

maxz Z per(i, j,h;)x,,
i
subject to:

2 x,; =1, where j=1,2,...n
z xij=1,wherei=1,2,...m
J

X, 2 0, i=1,2,...m and j =1,2,...n
where per(i, j, h) is the estimated performance resulting from the matching up of our
player i with opposition’s player h in position j. It is still possible to develop the
performance functions for our players by adjusting per(i, j) to account for a
“reduction” that will depend on the identity of the opposition’s player. One simple
construction would reflect a linear relationship between the performance of our
player and the influence of the opposition’s player in the corresponding position. For
instance, this relationship might be represented by the equation

per(i’j’hj) = per(i’j)— per(i,hj) ’
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where per(i, h) is the amount by which opposition player h, reduces the performance
of our player i in position j. Recall that the term per(i, j) is the already-defined
performance of our player i in position j.

There are several ways that the opposition’s contribution could be evaluated. It is
likely, however, that all the information which is available on our players (such as
the physical fitness data or training scores) might not be available for the
opposition’s players. This lack of information has to be taken into account when
modelling the effect that the opposition’s players have on the performance of our
players.

One way of overcoming this could be by basing the performance functions of the
opposition players on the performance model built for our own players. The latter
might need to be modified to omit those variables/measurements which were
monitored for our players but not for the opposition players. Most AFL teams collect
at least some statistics on their players and some of the match statistics might be
available from sources such as newspaper reports, etc.

Another way that may be considered is to rely on the coach and/or the selectors to
give an estimate of the performance reduction based on the opposition players’ past
(recent?) games against our team, as well as against other teams. The coach may be
able to provide a percentage estimate based on his intuition, for example, “If b’ is in
full forward, he will reduce the efforts of our full back by a half,” or, “If 'h’ is in full forward,
he will significantly/moderately/insignificantly reduce the efforts of our full back”. The
latter qualitative statements by an “expert” such as the coach can then be converted
to a numerical reduction term or a factor. For instance, we might obtain the
expression

per(ijh) = per(ij)red(i,h;); 0<red(i,h;) <1

where red(i, h) is now a multiplicative performance reduction factor.

Hence the player of the opposition is reducing our player’s effectiveness by a certain
percentage, where 0 value means that our player’s efforts are completely annulled
and a value of 1 means that the opposition player has no effect on the performance of
our player. It is expected that per(i, h) = 0 or 1 would occur very rarely. However the
case (where per = 0) is interesting from linear programming point of view, since this
might have an effect on the interaction terms mentioned in the next section.

4. INTERACTIONS

So far the discussion regarded each player i as an independent individual on the
field. That is, player i contributes to his team total performance only via his
individual performance in the assigned position. In a real game, players interact on
the field and form good, indifferent, and bad partnerships of two or more players. A
more sensitive system would account for these interactions.
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From the mathematical modelling perspective, the issue of accounting for
interactions appears deceptively simple. For instance, the interactions between pairs
of players could be included in the objective function as terms of the form:

int (i,j, k, 1) X, Xy

where the interaction term int(i, j, k, 1) represents the contribution of the pair of
players i and k to the team if they are assigned positions j and /, respectively.

However, to consider the above extension fully would create almost insurmountable
difficulties both from mathematical and practical perspectives. Firstly, the
mathematical program to be solved now becomes an indefinite quadratic, which,
algorithmically, can be prohibitively difficult. Secondly, the burden of
estimating/modelling all the interaction coefficients int(i ,j, k, I) would be equally
prohibitive.

Perhaps, the only practical way to include a (very) limited number of these
interactions, is to identify a small number of 4-tuples (i ,j ,k ,]) which — according to
the coach’s judgement — are especially important to the performance of the team and
to model the corresponding interaction coefficients for these 4-tuples only. The
resulting, indefinite quadratic program with 0-1 variables might still be tractable via
integer programming heuristics for non-linear programs (Pardalos and Rosen [4]).

A possible method for calculating the above interaction coefficients could involve
observing and evaluating the success of such a combination in the past. For instance,
for a combination of two particular players in the full forward and forward pocket
positions, one might score the number of successful passes, and/or the percentage of
times that the combination has scored after gaining possession, and compare this to a
match (or a period during the match) when the full forward was unsupported.

Of course, in principle, interactions among three or more players could be
incorporated along the same lines. Once again, this capability is limited by both the
modelling/estimation and the algorithmic considerations.

5. CONCLUSION AND FUTURE RESEARCH

A methodology has been discussed that exploits Analytic Hierarchy Process to
construct performance functions for individual players in Australian Rules Football.
Once these functions are constructed/estimated they can be utilised, as coefficients,
in a mathematical program designed to maximise the overall performance of the
team. The latter is of the form of “Assignment Problem”, a classical Operations
Research problem that calculates the optimal assignment of the players on the field.
Methods were discussed that could be employed to extend this work to include
interactions between players of the same team.

Once the performance indicators have been decided upon, the effect of opposition
players may also be considered. To achieve this, two special forms of “performance
reduction” functions were proposed.
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Future research efforts will be concentrated on fine tuning of the player performance
indicator functions and on the incorporation of the interactions between team-mates
in the linear program.
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IT’S JUST NOT CRICKET

George A. Christos’

Abstract

“Rain, rain, go away, come again another day”

Cricket authorities have been wrestling with the problem of ensuring a fair contest
when a one-day limited-overs cricket match is affected by rain. The original run-
rate system was so biased towards the team batting second that whenever rain
looked threatening the team that won the toss invariably chose to bat last. A new
system was introduced in Australia and New Zealand for the World Cup of Cricket
in 1992, but this was a failure since it gave the team batting first an unfair
advantage. A modified version of this system is currently used in Australia. A
completely new system was introduced by the International Cricket Council (ICC)
in 1995. The problem with these next generation systems is that they are artificial
and unnecessarily complicated. The public and most players do not understand
how target scores are calculated, and it is difficult to foresee what might happen if
there are further interruptions due to rain. We will review these various systems
that have been tried, before we propose our own simple solution to this vexing
problem. Our basic idea is that both teams compete on run-rate (who scores the
most number of runs per balls faced), as in the old system, but when the number of
overs is reduced the number of available batsmen or wickets is also reduced,
possibly by a random deselection process. We propose that one wicket is made
available for every 5 overs.

1. INTRODUCTION

The first one-day international cricket match was played on 5 January 1971 at the
MCG in Melbourne between Australia and England. This match was hastily
arranged on the final scheduled day of the third test match, which had been
abandoned because of rain. Since then over 1000 one-day international cricket
matches have been played, and one-day cricket is now arguably more popular than
test cricket. The basic idea behind one-day, or limited-overs, cricket is to see which
team can score the most number of runs from a fixed number of balls faced (usually
50 overs), under similar playing conditions. In effect, the key to the game is to see
which team can score at the highest average run-rate.

A problem soon emerged with this philosophy when the weather interrupted play,
and time was lost, resulting in a shortening of one or both innings to less than 50
overs. Under what we will refer to as the old system, which was used in Australia
up to 1991, and in most other cricketing nations until 1995/96, the team batting
second would chase a target score obtained by multiplying the run-rate obtained by
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the team that batted first by the number of overs that could be bowled in the second
innings. This system clearly gives the team batting second a distinct advantage since
they would generally be chasing a much lower total with all ten wickets available.
This advantage was so great that if the weather looked threatening the team that won
the toss would invariably choose to bat second. This system was known to be flawed
since its inception, but was tolerated for want of a better system. The turning point
really came in 1989 when the third and deciding final in the World Series Cup
between Australia and the West Indies was ruined by the bias in these rules. Details
of this match are given below. A new system was introduced in Australia in 1991/92
and was used in the World Cup of Cricket in 1992 but this system, to be discussed
below, together with its variations, does not resolve the problem, as it now gives the
team batting first a distinct advantage. In 1995 the International Cricket Council
introduced yet another system, which we will also discuss below. We will argue that
these systems are either inconsistent, unnecessarily complicated, or both. We will
use explicit examples of one-day games to illustrate our arguments. We will then
propose our solution to this problem by averaging the number of wickets over an
innings.

As far as we know the ICC system, ratified in July 1995, has not been uniformly
accepted. Certainly the system used in Australia is different, and up until recently
the old system was still in use on the sub-continent. There is no universal rain-rule, a
rule is usually decided at the start of a competition. The problem with this is that it is
difficult to make proper comparisons between players and teams if more than one
rule is in use. We should note that, in some county games in England, the game has
been extended into the next day to ensure that both sides get the same number of
overs, but this really defeats the purpose of having a one-day game as an
entertainment spectacle, and the quality of the pitch can change over an extended
period.

2. FLAWS IN OLD SYSTEM

I will illustrate the flaws in the old system with three examples, which we will refer
to later as old(1), old(2), and old(3) respectively.

1. In the World Series Cup match played in Brisbane on 16 January 1982 between
Pakistan and the West Indies, Pakistan batted first and made 177 runs all out from
their 50 overs. Rain interrupted play and the West Indies were set a target of 107
in 30 overs. The West Indies made 9 for 107 off 28 overs and 5 balls and
subsequently won the match. One wonders if the West Indies would have been
able to sustain this run-rate for 50 overs given that they had lost 9 wickets after 29
overs.

2. In the World Series Cup match between Australia and Pakistan played in
Melbourne on 10 January 1989, Pakistan won the toss, Australia was put in to bat
first and scored 4 for 258 after 43 overs, a run-rate of 6 runs an over. Rain
interrupted play and Pakistan where set the comparatively easy target of 114 runs
in 19 overs. Pakistan made 7 for 108 off 19 overs and Australia deservedly won
that match, although Pakistan was clearly advantaged by these rules.



It’s Just Not Cricket 183

3. Our third example is the third and deciding final between Australia and the West
Indies played at the SCG on 18 January 1989, which was mentioned earlier. In that
match Australia batted first and were about 3 for 130 after about 28 overs when
the match was interrupted by rain, and reduced to 38 overs. In the last 10 overs of
that innings the Australian batsmen, lead by Dean Jones, scored at almost 10 runs
an over to take Australia to the very respectable total of 4 for 226 off 38 overs, a
run-rate of close to 6 runs an over. Before the West Indies came out to bat, rain
interrupted play again and the West Indies were set a target of 149 off 25 overs.
Rain interrupted play yet again, during the West Indies innings, and the target
was then further reduced to 108 runs off 18 overs. The West Indies scored 2 for
111 off 13 overs and 2 balls, and won the match on run-rate. The West Indies had
an enormous advantage in this match because they had all ten wickets available
and only needed to sustain the run-rate obtained by Australia for less than half the
number of overs. The Australian team was also disadvantaged when rain
interrupted their innings after 28 overs.

3. NEW SYSTEM

A new system was introduced in Australia in the summer of 1991/92 and was used
during the World Cup of Cricket played in Australia and New Zealand in 1992. In
this system, if play is reduced because of rain, the target of the team batting second is
reduced by subtracting those runs from the total that were scored in the
corresponding number of lost overs, in the first innings, that had the least number of
runs scored from them. In this situation the team that bats second will need to chase
a higher run-rate to compensate the fact that they are required to bat for less overs.
The problem with this system is that if a there is a small reduction in the number of
overs, the team batting second generally find themselves chasing almost the same
total as the team that batted first but with less overs to achieve this total. In this case
this system tends to favour the team that bats first, which reverses the situation with
the old system. This fact was well known to teams, who generally elected to bat first
when they won the toss. In the World Cup of Cricket held in Australia and New
Zealand in 1992 there were 39 games in all, 2 were abandoned because of rain and 6
games were affected by rain. We believe that most of these shortened games were
adversely affected by the new rules used in this competition. We will give 4
examples from this competition below, which we will refer to later as new(1), new(2),
new(3), and new(4) respectively.

1. In the match between Australia and India played in Brisbane on 1 March 1992,
Australia won the toss, batted first and scored 9 for 237 off 50 overs. Rained
intervened and India was set the target of 236 runs off 47 overs, which is almost as
much as what Australia scored but with 3 overs less. India were all out for 234
and subsequently lost the match. The irony is that India was effectively punished
for the overs that they bowled where not many runs were scored, including
maidens.

2. In the match between India and Zimbabwe, played in Hamilton on 7 March 1992,
India won the toss, batted first and scored 7 for 203 in 32 overs. The number of
overs for Zimbabwe were reduced after further rain and Zimbabwe were set a
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target of 159 in 19 overs. Zimbabwe scored 1 for 104 off 19 overs and lost the
match.

3. In the match between South Africa and Pakistan, played in Brisbane on 8 March
1992, South Africa batted first and made 7 for 211 off 50 overs. Pakistan were 2 for
74 after 22 overs when rain interrupted play and Pakistan’s target was revised to
194 in 36 overs. Pakistan made 8 for 173 after their allocated 36 overs and lost the
match. It is ridiculous that Pakistan had to chase a total only 17 runs less than
South Africa with 14 less overs. Once again, Pakistan were effectively penalised
for bowling so many good overs. One of the other difficulties with this new
system is that it is difficult to foresee what the target will become if further time is
lost to bad weather. Pakistan was also disadvantaged in this match when play
was interrupted after 22 overs. From that point Pakistan required another 120
runs off the remaining 14 overs, a massive jump in the required run-rate.

4. Our last example concerns the semi-final in the World Cup of Cricket between
England and South Africa played in Sydney on 22 March 1992. In that match rain
delayed the start by 10 minutes. England batted first and made 6 for 252 after 45
overs. South Africa were unable to bowl the full 50 overs in the allotted time.
South Africa were 6 for 231 after 41 overs and 5 balls, when rain interrupted play
again. At that stage South Africa needed 22 runs off 19 balls to win the match and
play in the final. When play resumed, 3 overs were lost, but South Africa’s target
did not change since they had bowled 3 maiden overs. South Africa now required
an impossible 22 runs off the last ball to win the match.

Another problem with these biased systems is that when they give one side a huge
advantage, the players and viewers generally lose interest in the match and the game
in general. It is important to ensure that the rules are not only fair but are also
clearly perceived to be fair.

4. MODIFIED NEW SYSTEM

The new system used in Australia was modified in the summer of 1995/96, and is
currently in use in Australia. In order to re-compensate the team batting second,
which was clearly disadvantaged by the original new rules, it was decided to further
reduce their target by 0.5% for each over lost. We assume that this reduction of 0.5%
is applied to the preliminary target as calculated previously. For a target score of
around 200 runs, this reduction corresponds to about 1 run for each over lost. Note
that since the lowest scoring overs are still deducted to arrive at the preliminary
target, that this system still penalises a team for bowling well in the first innings.
Under these modified rules, in the game new(1), India would have had a target of
233 and would have possibly won that match. In the game new(2), Zimbabwe would
have been set a target of about 149 runs, instead of 159, whereas, in the game new(3)
Pakistan’s target would have been 181 off 36 overs, instead of 194, and in the game
new(4) South Africa would have still needed 19 runs off the last ball to win the
match. Although this reduction in the target is in the right direction, this system
probably still gives the team batting first a slight edge. More importantly this
system, with or without it modification, is inconsistent, since it effectively penalises
the team batting second if they bowl well in the first innings. We also believe that
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the system used in Australia is unnecessarily complicated, as most players and public
do not understand how targets are calculated, and how the situation might change if
there is a further reduction in the number of overs due to rain.

A completely new method for calculating the target score of the team batting second
was ratified by the International Cricket Council (ICC) in July 1995. In the ICC
system : “If the innings of the team batting second is delayed or interrupted and it is not
able to receive its full quota of overs, the target score shall be calculated as follows: the score of
the team batting first shall be multiplied by the percentage factor for the number of overs to be
bowled to the team batting second, as set out on the Target Score Calculation Chart (see
below). Fractions shall be rounded to the higher whole number. The percentage factors have
been derived from a detailed mathematical analysis of a database of one day matches with an
object to establish a “normal” performance.”

TARGET SCORE CALCULATION CHART

Overs| % Factor Overs| % Factor Overs| % Factor
25 66.7 34 82.2 43 94.2
26 68.4 35 84 44 95.1
27 70.2 36 85.3 45 96
28 72.4 37 86.7 46 96.7
29 74.2 38 88 47 97.8
30 76 39 89.3 48 98.7
31 77.8 40 90.7 49 99.6
32 79.1 41 92 50 100
33 80.9 42 92.9

As an example if the team batting first scored 250 runs in their 50 overs and the
innings of the team batting second is reduced to 35 overs, then the target will be

250 x —?%60 =210runs. If the target was set on run-rates alone, as in the original rules,

it would have been 175 runs, so clearly the ICC system tries to take into account that
the team batting second has more wickets available for fewer overs. The ICC system
is in many respects very similar to the system currently used in Australia, except
that, it cleverly avoids the contradiction where the team batting second is effectively
penalised for bowling well in the first innings. The ICC rule asserts that the target
score calculation chart was established from a detailed mathematical analysis of a
database of one-day matches with the object of establishing a “normal” performance.
We suggest that this really means that these figures have devised so as to try and
ensure a close game. The ICC rule also suffers from the criticism that it is too
complicated for the players and the public to be able to calculate the target score
themselves, and to determine the consequences of further interruptions due to rain.
As the number of overs in the chart starts from 25, this may suggest that the
minimum number of overs for a match to be declared valid is 25 overs per side,
otherwise the match is declared to be a draw. The ICC rain-rule also does not
explain what happens if the team batting first does not receive its full 50 overs.
Clearly the team batting first is disadvantaged if its innings is suddenly reduced,
especially in view of the fact that their run-rate generally accelerates in the last part
of the innings. There is no compensation made for this in these rules. We presume
that if the first innings is reduced, and the second innings is subsequently reduced
further, that the way to use to chart is to divide the score of the first innings by its
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appropriate percentage factor, corresponding to the number of overs in the first
innings, before multiplying by the percentage factor for the second innings.
Although the ICC system is probably the best system that has been devised by the
cricket authorities so far, it is artificial, and cannot properly take into account the
length, timing, and frequency of interruptions. In any case, we believe that the ICC
system is much too complicated for the players and public to use and understand.
We note that the ICC system would not have resolved the fiasco in the 1992 World
Cup match between England and South Africa, example new(4). After the last
interruption South Africa’s target would have been recalculated to be

ZSZX%:ZM runs, which would have meant that South Africa would have

required an equally impossible 13 runs off the last ball to win that match.

5. PROPOSED SYSTEM

We believe that the only way to properly resolve the problem of fairness in a one-day
game where one or both innings have been shortened because of rain, is to effectively
average the 10 available wickets over 50 overs, with both teams competing on run-
rate, as in the original rules. My proposal is that a team that bats its full 50 overs is
deemed to have used all of its 10 wickets. If rain interrupts play and the number of
overs in an innings is reduced, the number of available wickets is also reduced by
one wicket for every 5 overs lost. More precisely, one wicket is available for every 5
overs, so if an innings is 35 overs for example there will be 7 wickets available to that
team. It is obviously prudent to restrict the length of an innings to multiples of 5
overs, starting from a minimum of 15 overs say. The rule about the number of
available wickets would also apply if there is a reduction in the number of overs in
the first innings. If the team batting has already used up its appropriate number of
wickets when rain interrupts play and the innings is shortened then that team will be
deemed to be all out. Before we explain how the number of available wicket can be
fairly reduced, it would be useful to go through the examples given above to see how
the situation would have changed under this new proposed system.

¢ In the example old(1), the West Indies would have had to chase the target of 107
runs with only 6 wickets available. The West Indies would have probably lost that
match since they were 9 out when they achieved that target.

¢ In the example old(2), Pakistan would have been chasing a target of 114 runs off 19
overs with 3 wickets in hand, or more appropriately the target may have been 120
runs off 20 overs with 4 wickets available, or 90 runs off 15 overs with 3 wickets
available. Although Pakistan would have still lost this match, it would have been a
much fairer contest under one of these scenarios.

¢ In the example 0ld(3), when rain interrupted play after 28 overs in the Australian
innings, and shortened the match to 38 overs, Australia would have lost 2 or 3 of its
available wickets, depending on whether the number of overs was reduced to 40 or
35 overs respectively. When rain interrupted play again the West Indies would have
been set a target of 149 off 25 overs with 5 wickets available, and when more overs
where lost the target would have been either 119 runs off 20 overs with 4 wickets, or
90 runs off 15 overs with 3 wickets. Based on what did happen, the West Indies may
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well have won that match but the situation may have been different if the West
Indies knew that they only had 3 or 4 wickets available in their innings, especially
since the West Indies were at one stage 2 out for 4 runs. This game would have
certainly been much more entertaining and fairer in the proposed system.

e In the example new(1), India may have been set a target of 214 runs off 45 overs
with 9 wickets. India would have probably won this match based on run-rates.

¢ In the example new(2), Zimbabwe would have been set a target of 127 off 20 overs
with 4 wickets, or 96 runs off 15 overs with 3 wickets in hand.

e In the example new(3), Pakistan would have been set a target of 148 off 35 overs,
with 7 wickets available. Pakistan would have won this match since they were
already 157 runs at the fall of the sixth wicket.

¢ In the example new(4), when South Africa came back to bat for the last time they
would have needed 5 runs off the last ball to win the match, as opposed to 22 runs. If
the match had not resumed England would have won with a run-rate of 5.6,
compared to South Africa’s 5.52.

It is clear that under our proposed rain-rule these games, used as examples, would
have been much more interesting and fairer. It is also apparent that the result in
many of these games may have been quite different under the proposed system. In
most competitions, changing just one result can completely change the final positions
of the teams. This would have been certainly the case in the World Cup competition
held in Australia and New Zealand in 1992.

The other important feature in our proposed system is that both teams know
precisely what is expected of them to win the game at any stage of the game,
irrespective of how many times rain interrupts, or may interrupt play, since all that
matters is the overall run-rate, and both teams know that they effectively have one
wicket available for every 5 overs. Because of this averaging of wickets, both teams
are well placed to pace themselves uniformly throughout the innings. All that they
need to focus on is the run-rate. In the Australian and ICC systems it is not possible
to foresee what will be required if there are further interruptions to play.

The only question that remains is how to reduce the number of wickets fairly, in
particular which batsmen should be chosen as ineligible. Clearly it is unfair to
deselect either the top order batsmen or the bottom order batsmen preferentially. In
any case if one was to devise some rule, any rule, the teams would be free to
manipulate their batting order to exploit that rule. The fairest arrangement is
achieved by deselecting a random sample from all of the batsmen. This can be
implemented by using computer random number programs, by lot, or by lotto balls,
for example. As there may be a tendency not to trust computers (since they are
programmed by people), lotto balls may be the most appropriate means to deselect
players from a team in a rain reduced match. On very rare occasions it may turn out
that a team may be greatly disadvantaged by this deselection process, however on
average the random deselection process is the fairest system possible. Another
criticism of our proposed system (made by David Richards, Chief Executive, ICC,
private communication 1994) is that, in the interests of public entertainment, one or
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more of the top players may be deselected from batting in a shortened innings. We
believe however that the public would prefer to see a fairer contest, and in any case
some of these top order batsman may not get a turn to bat in a shortened match.
Another possibility, that would avoid these concerns, is to allow both teams to
‘equally’ choose which batsman are eligible to bat. If the number of wickets available
to a team is reduced to say 5, or in other words to 6 batsmen, then the team batting
can choose 3 of them and the team bowling can choose the other 3. If there is an odd
number of batsmen then the team batting may choose the extra batsman.

Most of the data used in this paper was obtained from the CricInfo Web Site located
at the URL http:/ /www-uk.cricket.org/link_to_database/ ARCHIVE/.
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ISSUES IN CRICKET AND GOLF

Derek R. Binghaml, Basil M. de Silva’ and Tim B. Swartz’

Abstract

This paper considers statistical issues related to cricket and golf data. It is a review
of the recent work in cricket by de Silva and Swartz [1] and in golf by Bingham and
Swartz [2]. With respect to cricket, it is shown that winning the coin toss at the
outset of a match provides no competitive advantage in one-day international
cricket matches. It is also estimated that playing on one's home field increases the
log-odds of the probability of winning a cricket match by approximately .5. In golf,
it is shown that the weaker golfer has an advantage in net medal play according to
the United States Golf Association handicap system. An alternative procedure
which leads to ““fairer" golf competitions is also presented.

1. ISSUES IN CRICKET

Over the past 10 years, there have been several papers that have considered various
statistical aspects concerning the game of cricket. These include Crowe and
Middledorp [3], Kumar [4], Ganesalingam, Kumar and Ganeshanandam [5], Kimber
[6], Clarke [7] and Danaher [8].

As presented in de Silva and Swartz [1], we consider one-day international (ODI)
matches involving games between the 9 nations belonging to the International
Cricket Council (ICC). These games represent the game of cricket played at the
highest level with relative stability amongst the teams. We have collected data on the
427 matches played during the 1990's up until the Asia Cup concluding in July 1997.
This time period captures the modern game of cricket where the rules have been
relatively uniform. It is also the case that recent data is more extensive and reliable.
To keep strategies constant, we have limited the data to full 50-over matches and
have ignored matches decided by run rates. The data was collected from the
comprehensive CricInfo (see www.cricket.org) web page.

At the beginning of a match, a coin is tossed and the team that wins the toss is
granted the choice of batting first or second. Some people believe that a team should
bat first, establish a number of runs and produce a psychological hurdle for the
second team to overcome. Others believe that there is an advantage in batting second
as this team knows what score its opponent has produced. This additional
information allows the team batting second to adjust their strategy accordingly. Still
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information allows the team batting second to adjust their strategy accordingly. Still
others feel that the choice between batting first or second should depend on auxiliary
and subjective variables such as the weather, the pitch (ie. field) conditions, the
team's health, the team's morale, the opponent, whether the team will bat in daylight
or under floodlights, etc. Clearly, this is a topic of considerable interest.

As a preliminary study, Table 1 provides summary data on the 427, ODI matches
involving the 9 ICC nations. Here B, is the proportion of time that a team chooses to

bat first upon winning the coin toss, W, is the overall winning proportion and W, is

the winning proportion in games played on a home field. The quantities in
parentheses are the number of cases. We see from column B, that there is great

disparity amongst the various teams with respect to their decision to bat either first
or second. For example, upon winning the coin toss, Australia chooses to bat first
87% of the time whereas Sri Lanka chooses to bat first only 36% of the time.

Consider then the data (x;,y;), i =1,...,n where n is the number of games played by

the team of interest, x, = 1(0) if the team wins(loses) the coin toss in the i" game and
y; = 1(0) if the team wins(loses) the game. We have the statistical model y, Ix, =1~
Bernoulli(p,) and y, lx; =0~ Bernoulli(q,) where P(x,=1)=P(x; =0)=1/2 for

i =1,...,n. We are therefore interested in comparing the strategy Z:‘: P versus the

strategy z;] g; - Of the 427 matches in the data set, 8 games resulted in ties. We
exclude these matches from the analysis.

Table 1

Summary data for the 9 ICC nations.

Nation B, W, W,
Australia .87 (68) .63 (127) .67 (69)
England .65 (20) .36 (45) 75 (4)
India .56 (59) .49 (106) .72 (39)
New .55 (51) 37 (99) 50 (44)
Zealand

Pakistan 47 (66) 57 (131) .60 (20)
South Africa .69 (42) .61 (94) 71 (42)
Sri Lanka .36 (56) .46 (100) 71 (21)
West Indies .36 (39) .53 (90) 57 (21)
Zimbabwe .58 (26) 17 (46) .36 (11)

Our first analysis requires the assumption that p, =p and ¢, =g forall i=1,...,n.

This simplistic assumption is clearly unrealistic as it assumes that the opponents are
all of equal strength and that the playing conditions are constant over time.
However, it is a good starting point and the test of H;: p < g versus H,: p> g is easily
carried out using a two-sample Binomial test. The first binomial variable is the
number of wins having won the coin toss and the second binomial variable is the
number of wins having lost the coin toss. The p-values are .53, .53, .21, .97, .59, .85,
46, .23 and .50 for each of the ICC nations as listed in alphabetical order. These p-
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values are very high; to be significant, p-values must be small (typically < .05 if we
are testing the hypothesis at 5% level of significance). Therefore, using this method,
we observe no evidence of successful strategies for any of the 9 ICC teams. In de
Silva and Swartz [1], 3 additional analyses based on weaker underlying assumptions
each provide results in the same general direction. We therefore conclude that
winning the coin toss has no impact on the outcome of ODI cricket matches.

We now turn to the existence of the home team advantage in ODI cricket matches.
From columns , W, and W,of Table 1, we see that every ICC nation has a higher

winning percentage during home games. Using the sign test, this is convincing
evidence of the existence of a home team advantage (ie. p-value=1/2 =002).

To investigate the effect of the home team advantage, we modify our notation and let
p;, be the probability that team i defeats team j at site k where i, j,k=1,...,9, and,

in addition, k=0 denotes a non-ICC site. We introduce the model

logit(p; ) =1, —7; +7,, Where 2111,. =0 and

Y if team i is the home team
Yie =10 if the game is played on a neutral site
—v if team is the home team

This is a 9-parameter model where 7, is a measure of the differential strength of team
i . Therefore, the offset 7, — 7, represents the advantage in log-odds that team i has

over team j. The model also assumes that the home team advantage y is constant
over all ICC teams. Note that the logit transformation of p, is natural in two

respects. Firstly, for teams of equal strength that play on a neutral site, we have
logit(p,; ) = 0 which implies p, =5. Therefore, there is no need for an intercept term

in the model. Secondly, it is sensible to quantify the home team advantage on the log-
odds scale since we should expect small relative improvements for strong teams that
win most of their games. Conversely, we should expect large relative improvements
for weak teams that lose most of their games.

We again exclude the 8 tied games from the 427 matches and fit the model using
logistic regression. We obtain 7 =53 with standard error .14. To put this quantity in
perspective, a team with a winning percentage of 50% would increase its winning
percentage to 63% when playing at home. Therefore, playing on one's home field
provides a considerable edge to the home team.

2. ISSUES IN GOLF

Previous studies on handicapping in golf (eg. Scheid [9] and Pollock [10]) have
established that it is the better golfer who has an advantage in net matches between 2
golfers. This sentiment is also echoed by the United States Golf Association (USGA)
where they state in section 10-2 of the USGA Handicap Formual manual (see
www.usga.org/handicap /manual), “As your Handicap Index improves (gets lower),
you have a slightly better chance of placing high or winning a handicap event”. As
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presented in Bingham and Swartz [2], we consider net medal play between 2 golfers
when they are both playing well. From a tournament perspective, this is a most
practical question. For a golfer does not expect to win a prize when he plays poorly,
but when he plays well, at the very least, he expects a fair chance of winning a prize.
Therefore, statistically, our problem reduces to looking at the tails of distributions
used to model golf scores.

Data were collected from the computer handicap system at the Pemberton Valley
Golf and Country Club, Pemberton, British Columbia, Canada during the 1997 golf
season. To keep conditions as constant as possible, only rounds played by male
members at Pemberton Valley were considered. We limit our analysis to the 49 male
members who had completed 40 or more rounds during the year. We use the first 20
rounds as a tuneup period to allow the golfer to reach ““mid-season" form. We also
restrict our study to the immediate 20 rounds following the tuneup period. We hope
that by using a shortened period, golfers will not experience dramatic changes in
their skill levels. Each golfer will also have completed the same number of rounds of
golf. Therefore our data analysis is based on 49(20) = 980 scores.

For each golfer, we choose their best m net scores amongst the 20 rounds
immediately following the initial tuneup period. Here, the net scores are obtained by

subtracting a golfer's handicap as determined by the USGA's slope system from the

golfer's gross (i.e. actual) score. With m scores for each golfer, there are (%)m?

possible matches between 2 golfers that can be simulated. The matches are simulated
in the sense that the 2 golfers have not directly competed against one another. We
consider m=2,3,4 as this represents the best 10%, 15% and 20% of net scores (i.e.
occasions when the golfers play well). We exclude from the analysis the 5 pairs of
golfers that have the same handicap index. In Table 2, we give the results of the

Table 2

Simulated matches between 2 golfers based on their best m out of 20 net scores. The
percentages refer to matches won, lost and tied by the lower handicap (i.e. better)

golfer.
m Matches Wins Losses Ties
2 4,684 33.4% 58.2% 8.4%
3 10,539 34.2% 57.4% 8.4%
4 18,736 35.4% 56.0% 8.6%

simulated matches and observe that the weaker golfer enjoys a dramatic advantage
when both golfers are playing well. For example, with m =2 the weaker golfer wins
58.2% of the matches. These results may be surprising as they are in the opposite
direction of the existing literature.

We now corroborate these empirical findings with theoretical support. Consider that
2 golfers with independent gross scores X, and X, where H, and H, are the

respective handicap strokes determined by the USGA's slope system. Without loss of
generality, we assume that H, <H, so that X, refers to the gross score of the better
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golfer. Pollock [10] argues that the normal distribution can be used in modelling
gross scores for golfers of varying skill levels. Despite obvious deficiencies in the
model such as the underlying assumption of independence between golfers and the
approximation of a discrete distribution by a continuous distribution, Pollock's
normal model provides insight on a number of handicap issues. In this analysis, we

further assume that X, ~ Normal[u (Hy ), 0*(Hy )] where 1() and o() are increasing

functions. Whereas it is obvious that u is an increasing function, plots in Bingham
and Swartz [2] provide evidence that ¢ is also an increasing function.

Our interest lies in the investigation of
P, = Prob (the better golfer wins ‘ both golfers play well)

- Prob (xl “Hy <X, —Hy,[X; —u(HXi)—kc(Hxi)),i - 1,2

where k >0. Here, X, —H, represents the net score of golfer i and we condition on

both golfers playing better than kstandard deviations below their average gross
score. Using the formula for conditional probability, we have that

J- u(Hy,)-ko(Hy, )+Hy -Hy, J- u(Hy,)-ko(Hy,)

Fr, (0 fr, (%) dx,dx,

Fr, (%) f, (x) dxydlx

Xy =—oo xy=x;—Hy +Hy,

E{:

J- A(Hy, )—ka (Hy, )J- A(H ,)—ko(H y, )
e

Xy =—o0

for sufficiently large k where fy (x;)= U(Hx)(i)( G(”H( ﬁ)) and ¢ is the density of the

standard normal distribution.

Bingham and Swartz [2] show that lim, P, =0. Therefore, as both golfers play

better (i.e. k — o), it becomes impossible for the better golfer to win a match based
on net scores. This conclusion is in the same direction as the empirical results.

Mosteller and Youtz [11] considered the scores of professional golfers during the
final 2 rounds of PGA tournaments under ideal weather conditions. Under these
homogeneous conditions, they found that the scores could be well approximated by
a base score plus a Poisson variate. On the other hand, we are faced with
heterogeneous conditions (i.e. data involving golfers of varying skill levels playing
under various conditions). Furthermore, little is at stake for our golfers and we
therefore do not expect their effort to be constant over all rounds. Consequently, we
do not expect the Poisson model to provide outstanding fit. Rather, we use it as a
rough approximation to reality.

Consider then 2 golfers with independent gross scores X, and X, where H, and
H, are the respective handicap strokes determined by the slope system. Without
loss of generality, let H, < H, . We then assume that the net score X, -H, issuch
that
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where B; is the constant base score and W, ~ Poisson(6,),i = 1,2. The base score B, is
meant to represent the i" golfer's idealized or perfect net score.

Under net medal play, let P be the probability that the better golfer wins when both
golfers are playing their very best rounds of the year. Assuming that golfer i plays
n, rounds, i = 1,2, we have that

P =Prob(X

~H, <X, —Hy)

1,min 2,min

where the quantity X, . is the lowest of the n, scores corresponding to the random

n

variable X,.

Under reasonable conditions, it is shown in Bingham and Swartz [2] that P — Oas
n, > e and n, — . This establishes again that the better golfer has no chance of

winning when the 2 golfers play their best rounds of golf. Bingham and Swartz [2] go
on to estimate the probabilities P for golfers of various handicaps. This study also
confirms that it is the weaker golfer who has the advantage when both golfers are
playing well.

In Bingham and Swartz [2], a new net score

o 113(X - R)/ S —2.10-1.0821
B 274 +0.0531

is proposed based on the normal model where X is the golfers gross score, R is the
course rating, S is the slope rating and I is the golfer's handicap index. In Table 3,
we repeat the analysis of Table 2 using the new performance measure 7 . We see
that the outcomes of the simulated matches are far more balanced than when using
traditional net scores. For example, with m =4, the better golfer wins 50.3% of the
matches. This is much closer to the idealized value 50% than the value 35.4% which is
obtained using traditional net scores.

Table 3

Simulated matches between 2 golfers based on their best m out of 20 scores using the

statistic T . The percentages refer to matches won, lost and tied by the lower
handicap (i.e. better) golfer.

m Matches Wins Losses Ties
2 4,684 47.9% 52.1% 0.0%
3 10,539 49.0% 50.9% 0.0%
4 18,736 50.3% 49.7% 0.0%
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SPORT AND PHYSICAL FITNESS : AN APPLICATION OF FACTOR ANALYSIS
FOR DEVELOPING A TEST BATTERY

J.P. Verma' and Kuldeep Kumar’

Abstract

This study was undertaken to develop the test battery for measuring physical fitness
of Indian boys among the age group of 9 to 12 years. The sample consisted of 100
boys from different Schools in India. Twentyone test items were selected for this
study covering speed, strength, agility, balance, flexibility and endurance. The data
obtained from 21 tests were subjected to two types of analysis. Under descriptive
analysis, various measures were computed in order to have an idea about the
characteristics of all the 21 test items. Secondly, Factor analysis was applied by using
the principal component analysis and the final solution so obtained was used to
identify the different factors of general fitness. These factors were given an
appropriate name depending upon the characteristics of variables it contained.
Finally, the test battery for measuring general fitness was developed by picking up
one or two variables from each factor, having the highest loading. The battery thus
constituted the following test items: 50 Mts. dash for speed, Standing Broad Jump for
Power, 1 Min. Situps for Strength, Stork Balance on Bass Stick and 8 Min. Run/Walk
test for endurance.

1. INTRODUCTION

Evaluation of physical fitness depends upon various dimensions relating with the
ability of an individual to perform different kinds of day to day functions effectively.
Many methods have been suggested to evaluate the physical fitness among the
athletes. Physical fitness depends upon many dimensions like work capacity, the
total functioning capacity to perform certain specified task, muscular effort of the
individual involved, tasks to be performed, quality and intensity of effort. There are
conflicting views among the scientists regarding the various parameters which
should be used for measuring physical fitness.

Many efforts have been made by the various investigators to develop the test battery
for measuring the physical fitness of men and women in different age categories.
Studies on construction of fitness batteries were conducted by Start [1], Arnelt [2]
and Howell [3], whereas Hall [4], Seashore [5] and Cumbee [6] conducted the studies
on construction of test battery related to motor components. Mathews [7]
emphasised the capacity of muscles to measure the physical fitness. Further Harris
[8], Green [9] and Beckenholdt [10] have suggested various methods of selecting
variables for developing test batteries on different aspects, whereas Barry [11]
conducted factorial analysis of physique.

1
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This study was undertaken by the authors to develop test battery for measuring
physical fitness of the Indian boys among the age group of 9 to 12.

2. METHODS AND MATERIAL

A sample of 100 boys from the central schools of India were selected from 9 to 12
years age group randomly. In all 21 fitness test items covering speed, strength,
agility, balance, flexibility and endurance were selected for the study. The test items
were 40 Mts. Dash (40M), 50 Mts. Dash (50M), 60 Mts. Dash (60M), Squat Thrust
(5Q.T), Shuttle Run in standing position (SR1), Shuttle Run by turning (SR2), Sit and
Reach test for Hip & Trunk Flxibility (S & R.T), Shoulder Flexibility (SH.F), Bridge up
test for Spine Flexibility (SP.F), Pull Ups, Push Ups, 30 Sec. Sit Ups (30 Sec. SU), 1
Min. Sit Ups( 1 Min. SU), Maximum Sit Ups ( Max SU), Stork Balance on Bass Stick
(STORK), Bass Stick Test Lengthwise for Balance (LENGTH), Bass Stick Test
Crosswise for Balance (CROSS), Standing Broad Jump (SBJ), Vertical Jump (V]), 9
min run/walk test (9 Min.) and 8 min run/walk test (8 Min.).

In this study two types of analysis were carried out. Firstly, data obtained on all the
21 fitness parameters were subjected to descriptive analysis. Under descriptive
analysis various measures were computed in order to have an idea about the
characteristics of variables. Secondly, factor analysis was applied by using the
principal component analysis. Final solution so obtained was used to identify the
different factors of fitness. These factors were given an appropriate name depending
upon the characteristics of variables contained in it. Finally, a test battery for
measuring the fitness was prepared by picking up one or two variables having the
highest loading from each factor.

3. RESULTS

Various descriptive measures like lowest and highest scores, kurtosis, skewness,
mean, standard deviation, standard error and coefficient of variation were computed
and these findings are shown in table 1.

Table 1
ITEMS VARIABLES LOWEST HIGHEST KURTOSIS SKEWNESS MEAN STD.DEV. STD.ERROR CV
40M X1 5.70 9.50 4.25 1.17 7.03 0.75 0.08 10.62
50M X2 7.00 11.20 5.09 0.89 8.38 0.69 0.07 8.32
60M X3 7.90 13.20 4.80 1.09 9.82 0.91 0.09 9.24
Squat X4 10.00 24.00 3.89 0.02 18.69 2.58 0.26 13.78
Thrust
Shu.Run X5 10.10 15.00 9.10 3.48 11.47 0.80 0.08 6.98
in St.Po.
Shu.Run X6 10.40 15.00 6.94 2.39 11.84 0.79 0.08 6.65
by turning
Sit & X7 11.90 16.00 3.10 0.13 13.63 0.79 0.08 5.79
Reach Test
Shoulder X8 26.00 84.00 3.01 0.66 66.29 13.82 1.40 20.85
Flexi.
Spine X9 29.00 72.00 2.83 0.00 48.26 7.81 0.79 16.19
Flexi.
Pull Ups X10 0.00 13.00 3.06 0.50 3.76 2.93 0.29 77.84
Push Ups X11 1.00 50.00 5.66 1.53 14.47 08.35 0.85 87.67
30 Sec.Sit X12 3.00 32.00 3.66 0.59 17.95 5.32 0.54 29.64




Sport and Physical Fitness 199
Ups
1 Min.Sit X13 3.00 58.00 2.47 0.05 27.82 11.14 113 40.04
Ups
Max. Sit X14 3.00 76.00 2.79 0.16 30.67 14.87 151 48.48
Ups
BST X16 0.50 10.90 5.04 2.06 312 2.01 0.20 64.56
Lengthwis
e
BST 0.40 14.10 9.07 5.06 3.21 237 0.24 73.92
Crosswise
X17
Standing X18 1.40 248 2.92 0.00 191 0.21 0.02 10.79
Broad
Jump
Vertical X19 21.00 54.00 245 0.00 37.36 6.86 0.69 18.37
Jump
9 X20 1100.00 | 2250.00 2.67 0.01 1656.55 |  243.09 24.68 14.68
Min.Run/
Walk
8 X21 1180.00 | 2380.00 3.29 0.21 166438 | 22814 23.16 1371
Min.Run/
Walk
Further data on 21 variables were subjected to correlation analysis. All the
correlations among variables are shown in correlation matrix listed in table 2.
Table 2
Correlation Matrix of the Test Items
X1 X2 X3 X4 X5 X6 X7 X8 X9 XI0 XIl XI2 XI13 Xl4 XI5 X16 XI7 X18 X19 X20 X2I
X1 100 66 67 -13 26 .18 .16 .07 -17 -40 -06 .17 .12 .13 -11 -09 -17 -33 -23 -09 -39
X2 100 76 -17 39 21 .24 -08 -19 -40 -21 .10 -0l -02 .09 -0l -07 -44 -38 -28 -4l
X3 100 -16 29 .13 .25 -03 -16 -36 -16 .10 .05 .04 -06 -02 -13 -42 -38 -31 -48
X4 100 -28 -20 -08 -05 .09 .3 .19 20 .8 .6 .9 .08 .0 .13 .06 .20 .I8
X5 100 55 .14 -03 -31 -29 -26 -16 -20 -22 .03 .00 .10 -40 -31 -14 -04
X6 100 04 02 -07 -23 -08 -15 -17 -19 -10 -09 -06 -22 -24 -08 -.09
X7 100 -03 .13 -08 .14 -09 -10 -0l .06 00 .04 -21 -15 -13 .04
X8 100 -14 .12 -09 .08 .02 .03 -13 -20 -21 .04 06 -09 -.14
X9 100 -01 .04 .06 .12 .5 00 -12 05 25 .09 25 .26
X10 100 25 .02 -04 -07 -02 05 .13 36 26 .11 .08
X11 100 22 29 38 02 -19 13 22 29 21 .12
X12 100 85 75 -09 -09 -13 .17 .16 .14 -I3
X13 100 93 -11 -15 -15 .17 .06 .19 -02
X14 100 -11 -13 -16 .15 .05 .18 .01
X15 100 26 .38 -02 -05 .08 .25
X16 100 22 -21 -15 -17 .09
X17 100 13 .02 .03 .18
X18 100 64 .11 .06
X19 100 .10 .19
X20 1.00 .62
X21 1.00

X1=40 M.Dash X2=50 M.Dash X3=60 M.Dash X4=Squat Thrust X5=Shuttle Run in
Standing Position X6=Shuttle Run by turning X7=Sit & Reach test X8=Shoulder
Flexibility X9=Spine Flexibility X10=Pull Ups X11=Push Ups X12=30 Sec.Sit Ups
X13=1 Min.Sit ups X14=Max Sit Ups X15=Stork for Balance X16=BST Lengthwise for
balance X17=BST Crosswise for Balance X18=Standing Broad Jump X19=Vertical
Jump X20=9 Min.Run/Walk test X21=8 Min. Run/Walk test

Correlation matrix so obtained was used in principal component analysis. With the
help of principal component analysis, all 21 variables were divided into various
factors. With the help of Kaiser's [12] criteria suggested by Guttman only those
factors having latent roots greater than one were considered as common factors.
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Owing to this criteria 4 factors were retained which are shown in Table 3. Adcock
[13] suggested that the variable for which communality is less than .30 should not
become the member of the test battery. Such variable whose communality is too low,
indicates that the variable is unreliable and hence those variables are not included in
the factor analysis.

Table 3

Principal Component Analysis of the Test Items
(Unrotated Factor Loadings)

1 Vect. 2 Vect. 3 Vect. 4Vect.
ROOT 4.41 3.16 1.93 1.55
% Var.Exp 21.01 15.06 9.18 7.38
Cum.Var.Exp. 21.01 36.07 45.25 52.63
40M 0.62 0.47 0.06 0.01
50M 0.77 0.30 0.19 -0.14
60M 0.74 0.38 0.08 -0.17
SQ.T -0.37 0.11 0.34 -0.22
SR1(Standing) 0.62 -0.15 0.14 0.31
SR2(Turning) 0.44 -0.11 -0.03 0.49
Sit & Reach Test 0.25 0.01 0.27 0.06
Shoulder Flexi. 0.01 0.10 -0.52 0.06
Spine Flexi. -0.35 0.05 0.21 0.29
Pull Ups -0.51 -0.18 -0.24 -0.26
Push Ups -0.43 0.28 0.14 0.01
30 Sec. SU -0.24 0.83 0.10 -0.11
1 Min. SU -0.31 0.87 0.16 0.01
Max. SU -0.31 0.85 0.18 0.03
Stork Balance -0.06 -0.26 0.58 -0.31
BST Lengthwise 0.08 -0.29 0.36 -0.50
BST Crosswise -0.14 -0.34 0.46 -0.29
SBJ -0.67 0.04 -0.30 -0.12
V.J -0.59 -0.01 -0.27 -0.07
9 Min.R/W -0.46 0.06 0.38 0.54
8 Min.R/W -0.48 -0.31 0.49 0.44

Since unrotated factors do not generally represent useful scientific constructs and
therefore rotation was necessary if useful and meaningful constructs were to be
identified. Due to this fact, this unrotated matrix was subjected to varimax rotation

because of its great popularity and usefulness. The rotated factor matrix is given in
table 4.
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Table 4

Factor Analysis (Varimax Rotation)

1 Fact. 2 Fact. 3 Fact. 4 Fact. Communalities

ROOT 3.92 3.61 3.18 1.95 2.31
% Var.Exp. 17.18 15.15 9.29 11.00

# Var.Exp. 32.65 28.78 17.66 20.90

40M 0.63 0.25 -0.17 -0.34 0.61
50M 0.74 0.11 0.05 -0.43 0.74
60M 0.67 0.17 -0.49 0.73
SQ.T -0.20 0.32 0.39 0.14 0.31
SR1(Standing) 0.63 -0.34 -0.09 0.02 0.52
SR2(Turning) 0.47 -0.31 -0.32 0.16 0.45
Sit & Reach Test 0.35 -0.01 0.13 0.04 0.14
Shoulder Flexi. -0.18 -0.03 -0.45 -0.20 0.28
Spine Flexi. -0.08 0.16 0.01 0.47 0.26
Pull Ups -0.64 -0.03 0.08 -0.02 0.42
Push Ups -0.23 0.42 0.06 0.23 0.28
30 Sec. SU -0.02 0.87 -0.09 -0.05 0.77
1 Min. SU 0.01 0.92 -0.12 0.09 0.87
Max. SU 0.01 0.90 -0.11 0.12 0.85
Stork Balance 0.05 -0.04 0.70 0.09 0.50
BST Lengthwise 0.02 -0.14 0.64 -0.21 0.48
BST Crosswise -0.07 -0.13 0.63 0.10 0.43
SBJ -0.71 0.19 -0.09 0.09 0.56
V] -0.63 0.12 -0.09 0.11 0.43
9 Min.R/W -0.04 0.19 0.00 0.78 0.65
8 Min.R/W -0.11 -0.09 0.26 0.82 0.77

The latent roots of all the rotated factors have been given in table 4. Only those
variables having loading greater than +.40 were retained in the factors. A loading
greater than or equal to + .40 usually gives the non overlapping factors.

Each of the four factors obtained in table 4 were interpreted and given names. The
four factors obtained in the study accounted for 52.83% of the total common factor
variance.

Factor 1
Item No. Name of the Variable Factor Loading
1 40 M for Speed 0.63
2 50 M for Speed 0.74
3 60 M for Speed 0.67
6 SR1(Standing) for Agility 0.63
7 SR2(Turning) for Agility 0.47
10 Pull Ups for Strength -0.64
18 SBJ for Power -0.71
19 V.J]. -0.63
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The above factor is characterised by the speed and power variables. This factor could
be named as Speedo - Power. Among the items heavily loaded on the factor were 50
mts. dash, Standing Broad Jump for power, 60 Mts. Dash and Pull Ups. In terms of
relative contribution this factor accounted for 32.65 % of the total common factor
variance accounted by the 4 factors.

Factor 2
Item No. Name of the variable Factor Loading
11 Push Ups for Strength 0.42
12 30 Sec.SU for Strength 0.87
13 1 Min. SU for Strength 0.92
14 Max.SU for Strength 0.90

Factor 2 is characterised by high loadings of those items which commonly measure
Strength. Thus the best suited name of this factor might be termed as Strength
component. In terms of relative contribution this factor accounted for 28.78 % of the
total common factor variance accounted by the 4 factors.

Factor 3
Item No. Name of the variable Factor Loading
8 Shoulder Flexibility -0.45
15 Stork Balance 0.70
16 BST Lengthwise 0.64
17 BST Crosswise for Balance 0.63

In this factor items having highest loadings denotes the balancing variables and
hence this could be recognised as Balancing factor. This factor contributes only 17.66
% of the total common factor variance accounted by the 4 factors.

Factor 4
Item No. Name of the variable Factor Loading
2 50 M Dash for Speed -0.43
3 60 M Dash for Speed -0.50
9 Spine Flexibility 0.47
20 9 Min.Run/Walk Test 0.78
14 8 Min. Run/Walk Test 0.82

Factor 4 consists of five variables only. The loadings were high in those variables
which measure endurance thus this component was termed as Endurance factor. This
factor accounted for 20.90 % of the total common factor variance accounted by the 4
factors.

4. DEVELOPMENT OF TEST BATTERY

According to Fleishman (1963), inefficient test batteries are those with too many tests
on one factor and none from one or more of the other factors identified. Furthermore,
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the addition of more than one test per factor adds relatively little new information
about a subject's abilities, relative to the addition of tests from separate factor.

Table 5

Test Battery for Indian Boys for 9 to 12 years of age
Category for Measuring General Fitness

No. Item No. Name of the Variable
1 2 50M Dash for Speed
2 18 Standing Broad Jump for Power
3 13 1Min. Situps for Strength
4 15 Stork Balance on Bass Stick
5 21 8 Min. Run/Walk Test for Endurance

Owing to the above mentioned concept, five variables, two from first factor and one
each from the remaining three factors having the highest loading were selected to
constitute a test battery for measuring the general fitness for the Indian boys in 9 to
12 years of age category.

5. DISCUSSION

50 metre dash was selected for measuring the speed instead of 40 metre dash and 60
metre dash in the study. Loadings for 40 metre dash and 60 metre dash are lesser
than that of 50 metre dash, this indicates that the boys in the age category 9 to 12
years give optimum performance in 50 metre dash. This seems to be quite logical
because after attaining the maximum speed by crossing the acceleration phase a boy
of nine to twelve years of age may not maintain it for quite a long time. This might be
the reason why performance deteriorates in 60 metres. Further it is recommended to
test as to whether the boys in the age category less than 9 years give their optimum
performance in 30 metres or not.

Standing Broad Jump (SB]) was selected as the second test item in the test battery.
This measures the power component of an individual's fitness. This item was also
selected from the first factor. The two items were selected from the first factor
because of the fact that they measure the different dimensions of the fitness. If you
look at to the correlation between the 50 metre dash and SBJ in the table 2, it is equal
to -0.44, which is not a very high association, this indicates that one does not carry
the characteristics of others. Further principal component analysis was used in factor
analysis thus the first factor so obtained, contributes maximum in measuring the
concept of fitness in the target group. Therefore it is justifiable to pick up two test
items from the first factor.

Third parameter in the test battery was 1 Min. Situps for measuring strength. This
undoubtedly measures the strength of the subject and can serve an index for
measuring the strength related fitness.

Stork balance on Bass Stick was selected as fourth item from the third factor, to be
included in the test battery. This factor was selected on the basis of its highest
loading factor.
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Last factor in the test battery was 8 Min. Run/walk test for measuring endurance
related fitness. Here again, looking to the values of the loadings it is clear that the
performance of the boys was better in 8 Min.Run/Walk test instead of
9Min.Run/Walk test. Here also it may be concluded that probably in the higher age
group boys might perform better in 9 Min.Run/Walk test instead of 8
Min.Run/Walk test.

Many research workers around the world advocate the same test items to be used for
measuring the fitness level for the 7 to 16 years boys. Thus in the light of the above
mentioned facts fitness experts should try to reinvestigate their philosophy of using
the same test items for different age groups. On the basis of the above discussion, it is
hereby concluded that variables for measuring the speed and endurance might
change with age.

Thus through this study, a strategy was developed in order to measure the general
fitness of the boys in 9 to 12 years of age on the basis of five representative fitness
parameters.
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IN VIVO PREDICTIONS OF ACL STRESS AND STRAINS DURING SIDESTEPPING

Scott McLean', Robert J. Neal', William Daniel’ and Peter Myers’

Abstract

This paper describes a process by which the stresses and strains experienced by the
anterior cruciate ligament (ACL) can be predicted for running tasks. The method
relies on accurately measuring, using high speed video, the three rotational degrees
of freedom at the knee as subjects perform sidestepping (and straight-line running)
activities. These data, in conjunction with information on the ligament attachment
sites, obtained using magnetic resonance imaging techniques, are then used in a
mathematical model of the ACL. This model, which incorporates stress-relaxation
and memory effects, as well as linear and non-linear visco-elasticity, is then used to
predict the stresses and strains in the ligament by knowing the displacements of
the ligament attachment sites. The model data agree well with previously
published data on stresses and strains obtained from in-vitro specimens.

1. INTRODUCTION

Knowledge of the ACL mechanical response to specific joint loads is crucial to the
identification of potential injury mechanisms and has previously provided the
impetus for improved surgical repair and rehabilitation techniques. The literature
pertaining to the evaluation of ACL stress and strain under prescribed movement
conditions is predominantly experimental. Previously, ACL strain has been assessed
in-vitro using techniques such as simple scaling (Wang [1]), photogrammetry
(Blankevoort [2]) and spatial kinematic linkage (Takai [3]). More recently in-vivo
ACL strain has been evaluated using a variety of implantable strain gauge devices
(Beynnon [4] [5], Pope [6]). While these studies have provided valuable information
regarding ligament function and injury, their often invasive approach has questioned
their accuracy. As a result, a small, but increasing number of studies have adopted
mathematical modeling techniques to evaluate ACL strain and resultant stress.
Typically these studies involve measuring joint motions and the location of the
ligament attachments on each bone. The joint is then displaced mathematically
according to the measured motion, and the distance between the attachment points is
calculated for selected joint positions (Crowninshield [7], Edwards [8], Grood and
Hefzy [9]). An advantage of analytic knee modeling is that soft tissue structures that
are difficult to transduce through experimental studies may be readily investigated,
especially when analyses extend to include complex joint movements. The purpose
of this study therefore, was to develop an analytic knee model that could accurately
predict the in-vivo mechanical response of the ACL to knee movements previously
linked to ligament injury.

Department of Human Movement Studies, The University of Queensland.
Department of Mechanical Engineering, The University of Queensland.
Brisbane Orthopaedic and Sports Medicine Clinic, Holy Spirit Hospital.



208 Scott McLean, Robert J. Neal, William Daniel and Peter Myers

2. METHOD
Knee joint kinematics

Three-dimensional (3D) knee-joint kinematics were firstly quantified for the stance
phase of a “typical” sidestep cutting manoeuvre. The 3D global coordinates of
precisely-attached external skin-mounted markers were recorded via a high-speed
video (200 Hz) during both stationary and dynamic (moving) trials. These data were
then submitted to a custom software package (JTMOTION) which defined the local,
anatomically significant orthogonal Cartesian coordinate systems for the femoral
(x"y"z") and tibial (x"y"z") segments. The origins of each segment LCS (05005

and o}o;0]) were located globally by the position vectors 7" and 7, . The relative

movement between these coordinate systems within the global reference frame
subsequently enabled the three rotations at the knee joint to be quantified in clinical
terms (flexion-extension, abduction-adduction, external-internal rotation). A more
detailed description of this technique can be found elsewhere (McLean [10]).

Identification of attachment locations

A relationship between the mathematical and anatomical locations of the tibial and
femoral bundle attachments of the ACL was established using combined high-speed
video, magnetic resonance (MR) imaging and structural matrix analysis techniques.
Specifically, one of the external reference markers (tibial tuberosity) used in the
above kinematic analyses was denoted as the reference marker for the identification
of ligament attachment sites. This marker was then left in position in the ensuing MR
analyses which enabled a relationship between the external marker coordinates and
internal joint geometry to be established. The mathematical theory behind this
process is outlined below.

Reference Marker Location

The global (XYZ) 3D position of the reference marker was determined for the subject
standing in the anatomical position. Structural matrix analysis techniques were then
utilised to define the reference marker in terms of local (femoral and tibial) segment
coordinates.

The transformation matrices used to map the global-marker coordinates of the
reference marker (V' V,° V) onto each of the local coordinate systems were given by:

ir jF kP of i J. Kk ox
Femur_ l)F J‘F k)F 0;,: and Tihia_ lT ])T k)T OZ,- (1)

TliF O F kF of T T kT of

l, J: z 0,4 L Jz z 0z

0O 0 0 1 0O 0 0 1
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Thus, the 3D location of the reference marker with respect to the femoral LCS was
given by:

A Vy
F -1 G
Vil [Fefn‘ur} Yy (2)
‘/z F VZG
1 1
Similarly, the reference marker is defined with respect to the tibial LCS by:
4 VY
vr Tibia |~V | V.E
= I: r } Yc (3)
v, A

1 1

Magnetic Resonance Analyses

Magnetic resonance data were used in conjunction with the above information to
identify the geometrical (3D) locations of the femoral and tibial ACL attachments. To
accurately determine these locations, the stationary video data and MRI images were
required to be recorded for the same knee joint position. This result was ensured by
firstly calculating the relative knee rotations displayed by the subject for each of the
three degrees of freedom during the stationary video shot using the JTMOTION
software (McLean [10]). The static knee flexion angle was then accurately replicated
during MR procedures with the use of a 3 degree of freedom goniometer and
maintained throughout the protocol.

A water-filled marker was attached directly over the tibial tuberosity (similar to
video analyses) for all MR images. This ensured easy identification of the marker for
ensuing distance calculations. A series of 2D (sagittal, transverse and coronal) images
(TE 22 msec, TR 2500 msec, RARE FACTOR 16) were then taken to determine the 3D
location of each bundle attachment with respect to the marker centre (Figure 1).
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Figure 1: A sagittal image used to determine the 3D locations of the ACL attachment
sites. An external water filled marker enabled internal geometry to be
determined from external coordinates.

Once the distances from the external reference marker to the femoral (d”,d”,df) and
X y b}

tibial (d; ,d ,d;) ligament attachments were calculated, the anatomical locations of
each site were defined in local segment coordinates. Specifically, the local segment
coordinates of the femoral (AF )and tibial (BT ) ACL attachment sites were

Xz Xz
described by:

Al =l +alyi+V] +dDj+v] +dk (4)

X2

T _ T T\? T T\% T TN
B, =V, +d. )i +(V] +d)j+(V, +d, )k ®)
The convention of 4, d, and d, in each instance was dependent on the relationship
between virtual marker position and the positive orientation of each segments right-
hand coordinate system.

3. ACL LENGTH CALCULATION

In order to determine the length of the ACL at a particular time, each attachment was
firstly defined with respect to one local segment coordinate system. For the purpose
of the current investigation, the assumption was made that the femur was fixed and
displacements were applied to the tibia. Therefore, the instantaneous 3D coordinates
of the tibial attachment with respect to the femoral coordinate can be defined using;:

e ][] [ ]z ®
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A general expression was generated that enabled the location of the tibial attachment
to be determined with respect the femoral LCS over a given number of time steps.
That is:

32 )= 7] [ 2 ez) 7)

where for each iteration (i = 1 to n), the unique matrix transformations are calculated.

Thus, the instantaneous length of the ligament ( L] ), quantified over n time steps, is

related to the location of the insertion sites, expressed relative to the femoral
coordinate system by the following equation:

(2F) = (L) +(L5) +(z5)', ®)
where

Lf =Af -B;

L, =Aj -B; 9)
LF — AF F

These equations assume that the ligament lies in a straight line between insertion
sites and that the tibial attachment moves in relation to a fixed femoral attachment
with respect to time.

Relative elongation of the ACL

Specifically, the relative elongation (A) of the ligament was determined at each time
step using the equation:

Lf
/1,.=l—', fori=1ton. (10)
ref

where L denoted the instantaneous length of the ligament and |, corresponded to a

pre-determined reference length. For the above expression, the reference length was
determined from the previously recorded MR images. When direct measurement is
impossible, the reference length of the ACL is typically estimated as the length
corresponding to full knee extension (Pioletti [11], Renstrom [12]). It was felt that the
length of the ligament in the static MR images was a reasonable estimate of the
reference length since knee flexion was less than 5°.

Non-linear visoelastic model of ACL

A model similar to that proposed by Pioletti [11] was implemented to predict the
mechanical response of the ACL to the knee joint movements obtained in the
kinematic analyses. Specifically, the relative elongation data calculated above were
input into the model to determine the resultant instantaneous ligament stress. In
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developing this model, incompressibility of the ligament substance was assumed.
The motivation behind this assumption was that ligaments and tendons are mainly
composed of water, which is known to be nearly incompressible. Pioletti [11]
describes the viscoelastic behaviour of the ACL in response to tensile load using the
following detailed expression

[—Zexp[ﬁ[)f +1—3ﬂ+12 +%J%
o=0(1)=0p gl +n’l(/12 +3-3Iw +l4j(11)
2 2 A A
+26xp[ﬁ(/12 +1_3J]_E

For the above equation o and B are constants which were obtained experimentally
via traction tests. The short term memory effects of strain rate are modeled implicitly,
being viewed as an appropriate means by which to mimic the ligament’s viscoelastic
behaviours.

Long Term Memory Effects

For the purpose of the current model, a normalised exponential Prony series was
used as an appropriate means for the time relaxation identification M(s). It was
demonstrated that three exponentials were sufficient to correctly describe the time
relaxation behaviour. M(s) thus has the form:

a, exp| ——
k=1 ¢ Tk

a;

M(s) = (12)

M

k=1

In summary then, the general equation totally describing the viscoelastic behaviour
of the ACL was of the form:

S, =—pC™ +ap(2exp[(I, -3)]- I, )l + aBC
S, =n'(I, -3)C (13)

oo

[ 3 (6(t-s).s:Co)ds = [/ 8.(C(t ~))M1(s)ds

1)

where each equation cooresponds to the elastic, short term and long term memory
effects respectively.

4, MODEL LINEARISATION

The model proposed by Pioletti [11] is currently believed to best represent the
stress/strain relationship of the ACL, particularly for varying strain rates. Of concern
however is the fact that this model does not accommodate for the linear component
of the stress-strain relationship that has been shown to exist for the ACL. From the
abundance of experimental data available (Butler [13], Noyes [14]) the ACL stress
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strain curve can be viewed to consist of two discrete regions. Firstly, a non-linear low
stiffness region is evident, where large increases in length are accompanied by
relatively small changes in ligament stress. The characteristic crimp of the collagen
fibrils that make up the ligament appear to explain this phenomenon. As increased
loading causes the fibrils to straighten, a linear high stiffness region exists, where
increases in ligament stress are directly proportional to the strain. The exponential
function used to model the ACL stress-strain relationship by Pioletti [11] obviously
fails to incorporate this second phase.

To remedy the above limitation, we have linearised the model at a pre-determined
“reference strain” value, corresponding to the level of strain at which the collagen
fibrils become straightened and hence undergo linear and rapid increases in stress as
a function of strain. The choice for the reference strain was made based on
examination of the abundance of experimental data in the literature. This value was
observed typically, to occur at 7.5 + 2.1% strain.

The linearisation of the curve was achieved through simple mathematical calculation.
Equation 11 can be written in the following form:

o =aﬂ(—%eXp{ﬂ(ﬂf +%—3ﬂ+1+i3—+2expliﬂ[ﬂqz +%—3ﬂ——%]+

n’)ll[zﬂq‘ +%+4Z., +%—6212 —%]

(14)

where we have used the term A, to define strain rather than A

To determine the slope of the tangent at a specific point on this curve (in this case,
the point denoting the reference strain), we differentiate with respect to A,. That is:

4 a2 V280 2) [ alpa2 503
o | E {4%+&:ﬁ]ﬁ[2 AJ {%L+A ﬂ]w*

sl=—=0of +
i 2exp{ﬂ PEER ]+2ﬁ,ﬂ Py exp[ﬂ[lf +i—3ﬂ (15)
7, pE 2,
’5 3 2 10 12
8L -t d——— 124 +—=
A58 - Fa- 1ok e
Now, at A, =1 (ie., reference length), 3—0 =303 =initial slope.

. . A
If we then adopt a new origin and use A, =——, 6 =0,
ref

corresponds to A, using the

ref ref

above formula.
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That is:
oc=0,+op (—2[1+/3[A:2+;;—3)}+)§2+%]$+2[1+ﬁ(ﬁ2+)2:—3]—;: .
(16)
; @ 1 . 2 2 3
+N'A| 24 +— A =64 ——;
)ﬁ( § A A z J

The non-linear and linear viscoelastic behaviours of the ACL were therefore
completely described by equations 14 and 16 respectively. The implementation of
each equation was governed by whether the instantaneous strain fell above or below
the reference value. Again, to completely define the viscoelastic behaviour of the
model, the long term memory effects were necessarily incorporated into each of the
above equations as described in equation 13.

5. RESULTS AND DISCUSSION

The model was subjected to a number of tests to determine the reliability of the
predicted viscoelastic response. Cyclic loading and stress relaxation tests revealed
that the modelled output was consistent with measured experimental data (Figure 2).

g — é Stress relaxation
|
= T
@ .
-8 [
.a L
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§
FANL ;
0 5 10 Bo 5 10
Cycle .

Figure 2: Comparison of model outputs (dashed lines) and experimental data (dots)
for standard stress relaxation and cyclic loading of the human ACL.

Maximum strain values for the ACL during the sidestep cutting trials were consistent
with those that had been predicted to occur during normal physiological loading and
well below hypothesised maximum strain values (Noyes [14]). Furthermore, the
stress response of the model was consistent with experimental data and supported
the suggestion that the stiffness and ultimate stress of the ligament is dependent on
strain rate (Butler [13], Danto and Woo [15]).

From the model outputs, we were able to predict ligament stress as a function of
knee angle during the sidestep cut. For a typical sidestep, maximum stress values
were within physiologically safe ranges. When joint motions associated with an
abnormal sidestep were used to drive the model, the resultant stress-strain response
appeared to place the ligament at increased risk of injury and potential rupture

(Figure 3).
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Figure 3: Comparison of predicted stresses in the ACL for normal (solid lines) and
abnormal (dashed line) side steps.

6. CONCLUSION

Initial results suggest that the combined model can successfully predict the in-vivo
stress-strain relationship for the ACL from accurate kinematic and geometric data.
Specific model outputs were consistent with previously measured experimental data,
with maximum stress/strain values being similar to those proposed to exist under
normal physiological loading conditions. An accurate description of the ACL
mechanical response to complex joint movements not only assists evaluation of
injury potential, but also enables hazardous movement combinations, such as those
linked to abnormal cutting techniques to be identified. Despite the success of the
current model, further validation and development is proposed, including the effects
of ligament wrapping, varying cross-sectional area and increased fibre-bundle
numbers. These enhancements will provide valuable information pertaining to injury
prevention, rehabilitation and surgical repair.
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“WHO’S ON FIRST!” “WHAT?” “WHAT’S ON SECOND!”
AND HOW “WHAT’ GOT THERE ON AN OPTIMAL BASERUNNING PATH

Chris Harman'

Abstract

A model is presented here for finding optimal paths for a baseballer, starting from
home and sprinting through first base to second (ie ‘stretching a double’). Some
progress has previously been made on modelling sprinting on flat circular curves
at uniform speed. This has been used to estimate curvature effects for 200 and 400
metre sprint times. However, in the baseball situation, two additional factors are
important. The optimal trajectory is evidently not a circular curve and, since the
runner starts from rest after hitting the ball, the acceleration phase is crucial. A
method is devised here for including acceleration and more general curvature in
finding optimal paths for minimising sprinting time when ‘stretching a double’.

1. INTRODUCTION

In baseball, the team that gets more players around the bases to home plate wins the
game. However, in the hierarchy of offensive strategies, the most important is to
devise ways to get players to second base. Second base is called the “scoring base’,
since most outfield safe hits will score a runner from second. Consequently there is
much effort expended in devising ways to get runners to second. There are two
important strategic ways to do this. Firstly a baserunner can “steal' second base from
first, in which case the chosen path is trivial, essentially a straight line. Or, on an
outfield hit, a runner can decide to “stretch' a double by running from home plate
around first base to second. The path chosen by a runner in stretching a double is
not at all obvious but is of course crucial to successfully arriving at second base
before the ball. Players don't seem to be coached in this particular art of baserunning,
the reason being that the optimal path is not known. Good baserunners might
naturally choose a path close to optimal, but the situation needs to be analysed in
order to provide coaching guidelines.

In recent times, one of the best exponents of stretching doubles was Pete Rose the
famous major league baseballer who, even though he was not super fast, made an art
form out of turning a single into a double. Pete would now be in the Baseball Hall Of
Fame, but he was banned for betting on the game. To model this problem, it is
necessary to devise a way to solve the dynamics of a runner accelerating from rest
around a general curve. We will call the runner "Pete' - after Pete Rose. "What' is too
confusing.

Modelling sprinting in a straight line has been much studied. See for example Fuchs
[1], Pritchard [2] and Ward-Smith [3]. But models for running on a curve only seem
to have been successfully devised for circular arcs with constant speed (Greene [4]).

Department of Mathematics & Computing, University of Southern Queensland, Toowoomba, 4350
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Greene's model was supported by experimental evidence and compares well with
other models (Behncke [5]).

The distance between bases is 30 yards and so by stretching a double, a baserunner
runs a little over 60 yards. Velocity profiles against time are well known for the case
of accelerating sprinters over short distances (Pritchard [2]) and the approach here is
to assume that a baserunner has a sprinter's typical velocity profile in a straight line.
This velocity profile will then be moderated by the effect of curvature using a
generalisation of the results of Greene. Time of travel can then be calculated on
general curves and optimal solutions are found over classes of feasible curves.

2. SPRINT SPEED PROFILE

It has been shown (Pritchard [2]) that an excellent model for a top sprinter's speed-
time profile for 100 metres is given by

v(t) = PT(I — e“’”) ,

where P7 is the maximum speed of the runner and 7 is a constant determined by
internal resistances in the runner. Data indicates that 7is usually close to 1.

For simplicity, it will be assumed here that 7 = 1 so that the baserunner's natural
speed profile v in a straight line is given by

() =V(1-e), (1)

where V is the maximum speed in yards per second (since yards are a standard
baseball measure). Figure 1 shows this profile for the first 10 seconds where V = 10.

Assume now that the path of the sprinter is not a straight line but a curve y = f(x). If
the acceleration and speed profiles are assumed to be unaffected by the curvature,
the speed profile as a function of x can be solved as follows. Integrating (1) gives the
distance s covered in time ¢

s(2) =V(t—l+e_'). )
Eliminating t from (1) and (2) gives the relation
s=-Vlog (1-v/V)-v.

Hence,

1+ (7 (0)) dx =—Viog 1-v/V)-v.
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Figure 1: Sprinter’s speed profile against time.

Differentiating then gives

() =vtof 57

and so we get the non-linear initial value problem

V() (x) = (V —v)W1+ (£ (%), v(0) =0,

This can then be solved numerically using a Runge-Kutta solver and the solution
then interpolated to give the function

v=F(x), 3)

the speed as a function of position on the curve y = f(x). All computations in this
paper were performed using Mathematica. For the purposes of the following
analysis, it will be assumed that Pete's maximum speed V is 10 yards per second.

3. RADIUS OF CURVATURE EFFECTS

Greene [4] modelled the mechanical effects of a sprinter running around a flat
circular turn of radius R at constant speed. His model took account of the sprinter's
straight line top speed V, foot contact-time, ballistic air-time, step length, and stride
time. A reciprocal Froude number, or dimensionless radius Rg/V’ enabled him to
compare the theory against experiment for a large number of individuals on the
same set of axes. The influence of radius of the turn on subsequent velocity was
predicted and tested. The agreement between theory and practice was good and was
verified for a range of radii between about 4 and 28 yards. More complex models
have since been formulated but Behncke [5] considers that “the simplicity of
Green's(sic) result and the apparent ease of its derivation make it - an ideal candidate
for the analysis of the track and field situation.”

Greene's model requires the solution v of the equation

v +(Rg) v - (RgV)* =0.
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This is essentially a cubic and so Mathematica can be used to find the solution

1
= 1
(27Rg*V? +108Rg® +729Rg*V* | 23 Rg?
. 1 _ )

543 (27Rg2V2 +4/108Rg® +729Rg*V* |?

where R is the radius of the circular path and V is the top speed of the runner in a
straight line.

4, THE BASERUNNING MODEL

The task of modelling a baserunner’s dynamics using basic mechanics would be
daunting. The approach to be used here is to assume that (4) applies on the
appropriate baserunning curve y = f(x) where the radius of curvature R is given by

[1 + (f’(x))z]
£ (x)

3/2

R(x) =

Furthermore, using (3), it will be assumed that the baserunner's natural top sprinting
speed V at any point on his accelerating path will be given by V(s) = F(s), where s is
the distance along the curve y = f(x). This takes into account the acceleration from rest
of the runner along the curve y = f(x) but in the absence of curvature retarding

effects. Hence V(x) = Um{1+ (X ) 2 dx ) Equation (4) can then be used to allow

for the effect that curvature has on this natural sprinting speed. In this way the actual
speed v(R(x), V(x)) is estimated at any point x on the curve y = f(x). Once the speed
profile v(R(x), V(x)) is known on the curve y = f(x), the time of travel T can then be
computed numerically from

Lds J'x*\ll"' f(x
V(x

(5)

where L and x* give the respective extremities of the curve. Note that the problem of
sliding into second base is ignored in this paper. It is convenient to just calculate the
time taken to reach second base at which time the sprinter will be running at the top
speed possible on that curve.

5. PATH SELECTION

The layout of the bases being considered is shown in Figure 2 with home plate at the
bottom right hand corner, first base at the apex of the triangle and second base at the
bottom left corner. The distance between bases is 30 yards and the semicircle is
indicated as a potential running path.
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Figure 2: Layout of the bases from home to second showing a runner’s semicircular path.

The theoretical optimal path is to run directly at first base, round first with an
infinitesimally small curve which slows you down infinitesimally and continue
sprinting in a straight line to second. Using (5) it was calculated that Pete would do
this in 6.9 seconds over the distance of 60 yards. Of course this optimal strategy fails
due to the impossibility of the dynamics at the point on the path with high curvature.
However, it is a useful result in that it provides a benchmark lower bound
baserunning time.

In order to make things possible, feasible paths will obviously require a constraint on
curvature. The path with minimum curvature is the semicircle shown in Figure 2.
Using (5) and velocity profile (3), Pete's time to run this path was computed to be 9.3
seconds over a distance of 67 metres. This is considerably more than his benchmark
time of 6.9 seconds and reinforces the experience that running on a semicircle is a
poor strategy.

312
Now |f” (x)| is an approximation to the curvature |f "(x)|[1+( f '(x))z] , and it is

x 2
well known that the path which minimises -[o [£"(x)] is a cubic spline. Since

curvature has a cumulative retarding effect on speed, choosing a cubic spline as a
potential running path is evidently a sensible strategy.

In choosing the spline, one thing is clear - the curvature at second base should be
zero. Approaching second, the runner is at top speed, ready to go into a slide. The
runner is always vertical at this stage indicating zero curvature of the path. What is
not certain is the angle at which the runner rounds first base. At first base it will be
assumed that the curvature is smooth and that the slope is 6. This information is
sufficient to determine the spline as

PN P S A R S G- BNy
_ _ 10v2 900
y=fx)= (6-1) (6-1) ’ (6)
15\/5+9x+ x%+ x> , —15«/—2_Sx<0
1072 900

where 6 is the slope of the curve at first base.
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6. RESULTS

Using path (6) Pete's running times determined by (5) were computed for a range of
0 values. The interpolated results are shown in Figure 3 together with the lengths of

the paths.

theta

Figure 3: Running time against 8 and running length against 6.

Figure 4 shows the optimal path corresponding to 6 = -0.2. The time of travel on this
path is 7.506 seconds over a distance of 61.73 yards. For 6 = -0.1, the path length is
61.69 yards and is the shortest, but takes 7.523 seconds. The more symmetric path
with slope 6 = 0 at first base has length 61.83 yards and takes 7.570 seconds.

rstf

15:

10+

5_
_ Secgnd \ . sl
-20 -10 10 20

Figure 4: The optimal running path.

Figure 5 shows Pete's velocity profile against x for this spline path with 6 = -0.2. It
clearly illustrates the effect of curvature as he runs around the bases from right to

left. v

-20 ~10 10 20 %

Figure 5: Speed profile against distance showing influence of curvature.
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7. Di1SCUSSION AND COACHING HINTS

It is interesting to note from above that this optimal time solution path does not
correspond to the shortest length spline. The shortest is 61.69 yards, but takes 7.523
seconds. For Pete, the quicker time path would enable him to arrive at second base
about 6 inches ahead of the shortest distance path. The more symmetric path,
corresponding to a zero slope at first base, takes 7.570 seconds which would leave
Pete about 2 feet short of the optimal path arrival at second base. These distances
may seem short, but when stretching a double, the plays at second base are usually
very close and every inch is important.

In order to exploit the advantage of choosing the optimal path with 8 = -0.2, a coach
could obviously mark out the trajectory shown in Figure 4 and test it against natural
inclinations of the runners. Time trials could be performed with selected runners
choosing variations on this path. A “rule of thumb' could be used by just marking the
two points where the optimal path is furthest from the baselines. The relevant point
between home and first is about 7.4 yards back from first and 1.6 yards out from the
line and the point between first and second is about 9.2 yards from second and 3.5
yards out from the line. A runner would then have five marked points (the two
marked points plus the three bases) through which to run and this would constrain
the path quite nicely as the optimal one.

Pete's maximum speed in a straight line was 10 yards per second. The technique
developed here was also tried for faster runners with maximum speeds of 11 and 12
yards per second. These correspond to even-time and champion sprinters
respectively. In each case the value of 6 for optimal trajectory was again close to -0.2,
so that the optimal paths were unchanged from that shown in Figure 4.

It might be possible to improve slightly on this result by using a class of curves more
general than cubic splines. But given the mechanical constraints of minimising the
effects of curvature, it can be argued that the approach used here would, for all
practical purposes, yield the optimal solution. The problem of extending this analysis
to running the bases to either third or home is interesting, but not of such
importance.
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THE SUBJECT: MATHEMATICS IN SPORT

Graeme L. Cohen!

Abstract

Sport is known as an excellent area for mathematical applications and research,
and as a source of problems and exercises at all levels of mathematics teaching. In
this paper, we describe a full-credit university elective subject, called Mathematics
in Sport, delivered for the first time last summer. Topics covered included the
assignment problem for team selection, probabilities in tennis arising from the
probability of winning a point, the “sweet spot”” on snooker balls and cricket bats,
the rigging of a rowing eight, and applications of graph theory in tournament
scheduling. We also argue here for more attention to be paid to the need for such
broad mathematical electives in university curricula.

1. INTRODUCTION
The current interplay between mathematics and sport has the following aspects:

e sport as a resource for new research in mathematics,

e sport as an area of application of existing mathematics,

e sport as a source of applications and exercises in the teaching of mathematics, at
primary, secondary and tertiary levels.

There is a natural fourth aspect of this relationship: the development of mathematics
in sport as a full-credit subject at university level. The aim of this paper is to describe
the subject Mathematics in Sport, which I taught for the first time in the 1997-98
Summer Session at the University of Technology, Sydney. The purpose in developing
the subject was to have available in the profile of the School of Mathematical Sciences
an elective subject that was equally suitable for, and appealing to, students
undertaking a degree majoring in an area of mathematics and students from any
other discipline in the university. There were to be no prerequisites other than high
school mathematics, including some calculus.

Sixteen students, three of whom were studying computing science and two
engineering, took the subject. The remainder were majoring in mathematics. In
many cases, the students had one subject to go in their course, and saw this as an
attractive option that they could complete over summer. Undoubtedly, this met both
the nobler objective of popularising mathematics and the baser objective of gaining
further funds for the School. I shall take up these points at the conclusion of the

paper.
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A small amount of funding had been made available to me in order to employ an
assistant for literature and web searches, and to make up our own database of
resources. This proved to be of immense value. When the decision was finally taken
around August 1997 to run the subject, I had most of the material I would need
readily at hand.

I had also obtained some material that I was not prepared to use. From the
beginning, I was interested only in what might be classified as legitimate uses of
mathematics as a means of describing, understanding or predicting sporting
achievements. I had no interest in the use of sport as an artificial source of exercises
in mathematics, although this is often seen in mathematics texts at all levels. Not
knowing the level at which the book was aimed, I sent away for Yesterday’s Sports,
Today’s Math [1]. In it, I found the following typical exercise, headed “Prime Time
Wrestling” (very slightly reworded to fit this text): “Weight (in pounds) of Mr Perfect
is 291, Crush 293, Doink 258, Hulk Hogan 303, Randy Savage 242, Bret Hart 274.
Consider these to be actual wrestlers” weights and wrestle this problem to the
ground. When two wrestlers meet, the heavier wrestler wins, unless the difference of
their weights is a prime number. Which one of the wrestlers can beat all the others?”
This is definitely not what I had in mind.

2. THE TOPICS

I shall first describe the major topics that made up the syllabus. The topics will be
listed in approximately the order of treatment, with a varying amount of discussion
usually dependent on whether I think I have anything half new to say about them.
References will be given to allow others to follow up this initiative. Since I am
continually finding new sources, it is quite likely that there will be some variation in
the topics to be treated next time the subject runs.

Besides these major topics, there were a number of smaller topics, some of which will
be given later. These often took just a few minutes to describe.

Assessment principles will be discussed in the next section, except to say here that a
major component of the assessment was a large essay. This must be borne in mind
since I avoided those topics in the main stream of lectures and seminars that I felt
would be more suitable for students to choose for their own research. Statistical
descriptions and analyses of various sporting records are the prominent example.

(1) The Assignment Problem. This is concerned with the manner in which a team is
chosen from a number of candidates. Typically, basketballers are chosen for a team
based on a ranking of their performance at different positions. An optimum selection
will be one with minimum sum of ranks. This is a standard transportation problem
in operations research, and may be treated as a problem in linear programming.
There is an alternative and very straightforward algorithmic approach to the
solution, called the Hungarian algorithm, described, for example, in Lapin [2].

Some time ago, Machol [3] pointed out the conceptual difficulty of relying on a sum
of necessarily approximate rankings, and suggested that choosing a swimming
medley team based on actual times in the four events (freestyle, breast stroke,
butterfly and backstroke), and minimising the sum of the times, was a more valid
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application. Heffley [4] suggested as a second application the choosing of runners in
a relay team, since each may perform differently in the separate legs of the race. The
class was asked to think of another legitimate application, and one student came up
with the choice of a triathlon team for inter-club events, where each event (running,
cycling, swimming) has a different competitor.

(2) A Probabilistic Analysis of Tennis. If A plays B at tennis, and the probability that A
wins a point (based on many matches between them) is p, then what is the
probability that A wins a game, a set, a match? What is the difference if tie-breaker
sets are played? What is the expected number of points in a game? (Each point is
considered to be an independent event.) Such questions have been posed and
answered by a number of writers, such as Pollard [5] and Sadovskii and Sadovskii

[6].

To determine the probability that A wins a game once the score is deuce seems, for all
the writers, to require summing an infinite geometric series. Nowhere did I see the
following simple approach. Let that probability be d . From deuce, either A wins the
next two points (with probability p?) or A and B win one point each (with
probability 2pg, where g =1- p) and then it is back to deuce. Therefore,

d= p2 +2pqd,

from which
2 2

p p

1-2pg p+q*

This is then used in determining the probability that A wins a game by calculating
also the probabilities that A wins in four, five or six points, or that A and B reach
deuce. Knowing this, the same approach is used for the probability of winning an
advantage set from five games all. Also, determining d is the same as determining
the probability that A wins a tie-breaker game from six points all.

There is a similar treatment for the expected number of points in a game. We need
first the expected number of points from the first deuce until the end of the game.
Let thisbe E. Then

E=2p*+2q> +2pq(E +2),

since either A wins the next two points, or B does, or they win one each, and in the
third case the expected number of points to the end of the game is two more than it
was from the first deuce. This simplifies to
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E=2+2pqgFE,
from which
. 2
S pitgt

Croucher’s derivation of this, in [7], uses series summation that is definitely not
available to students who have only a high school background in mathematics.

(3) Conversion Attempts in Rugby. The question of how far back from the try line to
bring the football so as to maximise the angle for the kick at goal has been treated by
a host of writers. Some apparently think they are answering the question for the first
time. The sequence of notes on this topic by Hughes [8], Avery [9] and Worsnop [10]
can be made into quite a fun lecture. Isaksen [11] extends the notion to American
football.

(4) Oar Arrangements in Rowing Eights. Following Brearley [12], we showed that the
common orthodox rigging of a rowing eight is less efficient than either the German
rigging or the Italian rigging (see Figure 1), in that the second and third
arrangements produce no turning moment at any stage of the stroke. Actually,
Brearley mentions only the orthodox and German arrangements, but does not use
these names. They are given by de Mestre [13], who adds also the Italian rigging. It
was easy to see that Brearley’s analysis applies equally to it.

N\

J L S S
NN NN
T LS S
NONN N\
S S

NN NN

Orthodox German [talian

Figure 1
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The class enjoyed this topic, and saw it as a superlative use of mathematics to deduce
an unexpected but presumably practical result. We found it difficult to track down
any actual uses of non-orthodox rigging, besides the reference in Brearley’s paper.
Then one of the students came up with Jacobsen’s history of Australian rowing [14]:

On arriving at Brisbane for training we learnt that the new boat ordered from
George Towns & Sons for the occasion had been smashed and would not be
delivered. We therefore borrowed a boat from Queensland University. It had been
set up with tandem rigging. Numbers ‘four’ and ‘five’ were on bow side, and ‘bow’
rowed as number ‘two’ while ‘two” rowed as ‘bow’. It sounds and felt rather
complicated, and without logical purpose, and it took some time to become
accustomed to the different positions ... [my italics]

(5) Where To Strike a Snooker Ball. In order to achieve just the right amount of initial
spin, and so as not to cause skidding (when skidding is not wanted), “the cue must
strike the snooker ball at a distance above the table equal to seven tenths of the
diameter of the ball”. This part of the topic was taken from Daish [15]. As did the
preceding topic, it required the introduction of a number of physical principles, new
to most of the class. It was all much better appreciated when I explained at the end
that the centre of percussion that we had found, the place to strike the snooker ball to
avoid skidding, was in fact the ball’s “sweet spot”, a term that everyone knew.

Also appreciated, with some awe, was the following statistic quoted from Lindrum
[16]: “... for many years [billiard balls] were made of ivory. Five balls could be made
from one elephant tusk and apparently only the female elephant tusk was suitable
for this purpose. It has been estimated that something like 12,000 elephants were
slaughtered annually to supply billiard balls to Great Britain.” The use of ivory
finished around the turn of the century.

Still on the theme of snooker, in Figure 2 I give copies of the seven transparencies I
designed to illustrate the “desnookering rectangle”. It has a vertex at the object ball,
which is not visible (snookered) from the cue ball, its centre at one of the table’s
corner pockets and its sides parallel to the table’s sides. When straight shots without
side-spin will do, shooting for any of the other three imagined vertices may allow an
escape from the snooker. In the right situation this really works, although I have not
seen any hint of this theme in any book on billiards or snooker. It is of course
dependent on the use of congruent triangles and the notion that the angle of
incidence equals the angle of reflection.
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In fact, the angle of incidence is not equal to the angle of reflection. The coefficient of
restitution between ball and cushion needs to be taken into account. De Mestre [13]
is one source on this. Since a snooker ball is somewhat thicker than a point,
assuming the angles to be equal is no doubt perfectly sound as an approximation for
getting out of snookers. At least, it is for the kind of snooker I play.

The final item in this topic concerned the game of three-cushion billiards. In this, the
“diamond system” appears to allow geometrical reasoning to be used to plan each
shot. It is described briefly by Lindrum [16], and in great detail by Byrne [17]. It
seems to be very complicated, and in any case, according to Byrne, must have each
shot performed with side-spin, or “English” as he calls it.

(6) The Best Way to Hit a Cricket Ball. This topic was based on the article by Brearley,
Burns and de Mestre [18]. They hoped to show that hitting a cricket ball at the centre
of percussion of the bat, besides giving the least jarring, might also be the spot that
would allow maximum distance to be attained. More rotational dynamics had to be
introduced, and the coefficient of restitution, between bat and ball this time, was
again required.

(7) Introduction to Tournaments. There are a number of aspects of graph theory
relevant to tournaments. Essentially, the vertices of a graph represent teams in a
competition, the edges indicate matches between teams, and, if they are directed
edges, they show which team won the match.

In graph theory, a complete directed graph is in fact called a tournament. The
theorem that every tournament contains a (directed) Hamilton path (Grimaldi [19, p.
581]) allows us to think that there is a team in a round robin event which might be
considered to be best (in that there is a team A, which beat team B, which beat team
C, ...). But then we find that this is rarely plausible. In fact, for tournaments with at
least three vertices, if there are two vertices with equal out-degree then there always
exists a cycle on three of the vertices. That is, in sporting parlance, if two teams in a
round robin event have an equal number of wins then there is always a triangular
standoff (where, say, team A beat team B, which beat team C, which beat team A).
See Sadovskii and Sadovskii [6, p. 133].

Another possible way to determine a winner in a round robin event might be to seek
a king: with three or more teams, there is always a team A (called a king) such that
every other team is either beaten by A or is beaten by another team that is beaten
by A. See Maurer [20].

On the question of scheduling the different rounds of a round robin, and learning to
avoid pitfalls such as taking insufficient care in the early rounds and then finding no
feasible arrangement for a subsequent round, we worked through Wallis [21]. Before
that though, the class took some delight in de Mestre’s approach, in [22], of drawing
up the rounds.

(8) Operations Research in Sports. Reading through Chapter 14, Operations Research
in Sports, of the Handbooks in OR & MS, Vol. 6 [22] allowed a useful survey of some
topics previously treated and still others for which time was not available for a fuller
treatment. These included:
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e strategies in baseball,

e the value of field position in American football,

e the value of a tie and extra-point strategy in American football,

e when to pull the goalie in ice hockey,

e the validity of winning streaks,

e issues in the draft system in professional sports,

e maximising expected achievements in athletic events of increasing difficulty, such
as weightlifting, pole vaulting and high jumping,

e competitive games of boldness, in which the competitor chooses the level of
difficulty, such as figure skating, gymnastics and diving, as well as the three events
just mentioned,

e handicapping issues.

This chapter of the Handbooks also contains a very large list of references to the
relevant operations research literature.

(9) Miscellaneous short topics. At various times during the course, a few minutes were
taken to discuss short topics such as the following: the Fosbury flop in high jumping,
the game of nim, the tactics of darts, the possible misleading nature of cricket
averages, and the design of a shuffleboard alley.

3. THE ASSESSMENT

There were two main items of assessment in the subject Mathematics in Sport. The
first was an essay. Associated with this were a preliminary paper giving the topic,
the aim and the methodology to be adopted, and a seminar presentation. The second
item of assessment was a final examination. I intend here to describe the essay
briefly.

The Summer Semester involves an accelerated teaching program so the choice of
essay topic had to be made quickly. The students were allowed to work in pairs on
an essay, but few chose to do so. Many of the essays amounted to the student’s own
summary and explanation of a paper or two in the literature, often with some
assistance from me, and some involved extensive web searches. The students were
expected to employ a level of mathematics or statistics in their work commensurate
with their attained level of study in these areas, and their essays were graded
accordingly.

Some of the topics were my suggestions. These include the following, for which in
relevant cases I have given references:

(a) Analysis of the last twenty years track records over different distances.

(b) Comparison of men’s and women’s track records in selected events.

(c) Arating system for one-day cricket. (See Johnston, Clarke and Noble [24].)

(d) Design and application of a program for the Assignment Problem.

(e) An analysis of handicapping systems in golf. (See Clarke and Rice [25], and
Stroud [26].)

(f) Is goal scoring in soccer a Poisson process? (See Avery [9].)

(g) The probability of winning a game in doubles tennis.
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From this list, some students chose variants of (a) or (b), and (c), (e) and (f).
Other topics chosen by students for themselves were:

(h) Effects of atmospheric changes on trajectories of projectiles in sport. (See de
Mestre [27].)

(i) Mathematics in casino gambling.

(j) The probability of winning the Australian Football League finals series. (See
Schwertman and Howard [28].)

(k) ATP tennis rankings.

(I) Goal conversions in football (extending the ideas in topic (3) of Section 2,
above).

In most cases, the results were very satisfactory, with a few being exceptional in the
thoroughness of the work and excellence of presentation. Notable was the essay on
the topic (h) (by Peter Krebs). Here is its great introduction:

In a limited over day and night cricket event recently, New Zealand was chasing
300 runs to win against South Africa. New Zealand needed to get 12 runs off the
last over. After four deliveries in that over, New Zealand was still seven runs short
to win. Nash managed a sweep shot with a flat trajectory on the next ball. The ball
carried towards the boundary and the point of impact was right on top of the
boundary rope for four. The distance to the boundary was around 100 metres.

Had the temperature at the Gabba in Brisbane been only one degree (1°C) higher, the
ball would have carried a further 50mm to clear the rope for six.

New Zealand lost the match by two runs.

4, BROAD ELECTIVES IN MATHEMATICS

For a few years before the detailed development of the subject Mathematics in Sport,
I had been interested in the concept of broad electives in mathematics — subjects
which could fit in to the elective program of any course in the university, with appeal
to a wide range of students, not requiring extensive prerequisite knowledge, but
having respectable mathematical substance. This would give the discipline of
mathematics some level of equality with areas such as humanities and language
studies, which have always been happy to offer one-off electives to students majoring
in mathematical sciences. I had applied, finally with a little success, for grants to
help develop this theme.

It seems reasonable to believe that many students, such as those who enjoyed high
school mathematics but saw no related career opportunities, would be keen to take
incidental studies of this sort. My experience with Mathematics in Sport is that the
applicability of mathematics in totally unexpected settings is greatly appreciated
(even by the mathematics majors in the class) and should be exploited much more
earnestly. No doubt, other university mathematics departments have such electives
available for the general body of students, but it has not been easy to find details of
their efforts.

In the Australian setting, there is a recent added impetus for broad mathematical
electives. Government cuts to recurrent expenditure grants have obliged all publicly
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funded university departments to seek their own additional funding. To do so is
now itself essentially part of Government policy. The main source of external funds
for most universities lies in attracting full-fee paying international students, and full-
fee paying postgraduate students. For individual mathematics departments, another
source is elective subjects of the type described here. This may simply attract some
funds away from other departments in the same university, but apparently this is the
game that the Australian Government wants us to play.

This is not the place to canvas this issue any further. I must add though that when I
mentioned above that these should be electives “having respectable mathematical
substance”, I find it hard to think of a better subject than Mathematics in Sport.
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AN ANALYSIS OF TEAM STATISTICS IN AUSTRALIAN RULES FOOTBALL

Andrew Patterson and Stephen R. Clarke'

Abstract

Champion Data has collected Australian Rules Football player statistics since the
beginning of the 1996 AFL season. As the data is collected from video replays, the
statistics show more detail than those previously published, with the quality and
effectiveness of possessions and disposals also being recorded. The statistics
include short and long kicks, effective handballs, contested and uncontested marks,
hard and loose ball gets, gathers, free kicks and clangers. The data have been
analysed to determine the contribution of each factor to the game outcome. The
ultimate aim of the investigation is to provide a scientific underpinning for a
player-rating system.

1. INTRODUCTION

The game of Australian Rules Football has been around for over a century and is
regarded as one of the most popular sports in the country. The 1997 AFL season
involved 16 teams who competed against each other with each team playing a total
of 22 matches during the home and away season. Although a finals series was
conducted at the end of the season this paper only investigates data from the home-
and-away matches.

During the 1997 season, each match took place on one of 11 grounds across the
country. Each ground has a centre square marked as well as a semicircle of radius 50
metres around the two goal lines at each end of the ground. Each team had a
designated “home ground” on which they played between nine and 15 games for the
season. A side could use 21 players for a match with 18 players being allowed on the
ground at any time. Matches are played over four quarters with each quarter lasting
about 30 minutes. At the end of each quarter the two teams exchange scoring ends.

Australian Rules Football is high scoring compared to other team sports. The ball is
moved around the ground by methods of kicking or punching, and with no offside
rule the game is played at a fast pace. A goal is worth six points and a behind is
worth one point. For the 1997 AFL season the average winning score was 16 goals 10
behinds, 106 points with the average losing score being 10 goals 8 behinds, 68 points.

Champion Data has collected the data since the beginning of the 1996 AFL season.
The statistics for each match are recorded using two people, one reading out the play
and the other entering the relevant information into a laptop computer. In 1997 there
were 36 designated statistics that were grouped into three categories - disposals,
possessions and attack. For the first time these statistics measured the quality of
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possession and disposal. For example, kicks were rated as clangers, ineffective, and
effective short and long kicks, according to team rules commonly used in clubs.
Some of the definitions of these variables are given in Table 1.

This paper looks at team totals for some of the more important variables, with a view
to determining the importance of each variable to the outcome of the game. The
competition statistics have been progressively broken down with respect to team,
result and opposition. Fisk [1] performed a similar analysis using team data from the
American National Basketball Association.

Table 1
Definitions of main player performance statistics.

Variable

Code

Category

Definition

Kick Long

KKL

Disposal

A kick of more than 40 metres to a
50/50 contest or better for the team

Kick Short

KKS

Disposal

A kick of less than 40 metres that
results in an uncontested possession
for the team

Kick Ineffective

KKI

Disposal

A kick of less than 40 metres to a
contest or a kick of more than 40
metres to a worse than 50/50 contest
for the team

Kick Clanger

KKC

Disposal

A kick under little or no pressure that
goes straight to an opponent

Handball Effective

HBE

Disposal

A handball to a team mate that hits the
intended target to the team’s
advantage

Handball Clanger

HBC

Disposal

A handball under little or no pressure
that goes straight to an opponent

Handball Received

HBR

Possession

When a player takes possession of the
ball via a handball and a clean disposal
follows

Loose Get

LBG

Possession

When a player picks up a disputed ball
that has spilled onto the ground and a
clean disposal follows

Hard Get

HBG

Possession

When a player picks up a disputed ball
that has spilled onto the ground in a
pressure situation and a clean disposal
follows

Mark Uncontested

MKU

Possession

When a
unopposed

takes a mark

player

Mark Contested

MKC

Possession

When a player marks under pressure
or in a pack

Inside-50

150

Attack

When a player takes or delivers the
ball inside the 50 metre area in the
team’s attacking half

Score

SCR

Attack

The total number of points scored by
the team
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2. COMPETITION DATA

In 1997 the average number of disposals per match for each team was 266. The
competition averages for each of the six methods of disposal is given in Table 2.
Kicking is the most common form of disposal with teams averaging twice as many
kicks as handballs. Long kicks are performed on more than twice as many occasions
as short kicks with clanger/ineffective kicks and handballs (junk disposals) counting
for about 15% of all disposals.

Table 2
Competition disposal statistics for the 1997 season.

Variable 1997 Competition % Disposal
Average
Kick Long 99.0 37.2
Kick Short 46.6 17.5
Kick Ineffective 27.7 10.4
Kick Clanger 8.8 3.3
Handball Effective 79.9 30.0
Handball Clanger 4.1 1.6
Total 266.1 100.0

In order for a player to effect a disposal, he must first gain possession of the ball.
Since a possession nearly always results in a disposal, the totals of these two
categories should always be about the same. The statistics show that football is
evenly divided between gaining and retaining possession with about 50% of
possessions being won in a contest situation and the other 50% coming from
uncontested play.

3. TEAM DATA

In 1997 Carlton averaged the most disposals per match and Melbourne averaged the
fewest of the 16 teams in the competition. Table 3 lists the number of disposals each
team averaged per match in 1997 as well as the breakdown of each method of
disposal. Adelaide and North Melbourne averaged the most effective long kicks
while Melbourne and Collingwood averaged the least. The Western Bulldogs had
more effective short kicks than any other side and Richmond had the fewest.
Carlton, Hawthorn and Essendon averaged a large number of effective handballs
while North Melbourne was well below the competition average. The two South
Australian sides, Adelaide and Port Adelaide averaged the fewest number of junk
disposals for the season.

The percentage breakdown of disposal methods shows the different styles of play
used by each team. Adelaide and North Melbourne were long kicking teams that
rarely handballed. Collingwood, West Coast and the Western Bulldogs all had high
short kick to long kick ratios while Melbourne and Hawthorn were more likely to
use handball as a form of disposal.
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Table 3
Breakdown of the average number of team disposals per match.

Team Total |[KKL! % |KKS! % |HBE! % |Junk! %
Adelaide 2659 | 109.1 141.0 |473 | 178 [73.0 1 275 | 364 | 13.7
Brisbane 2648 | 99.3 1375 |485 | 183 [756 1 286 | 414 | 15.6
Carlton 283.3 [103.7 136.6 [495 | 175 |89.5 | 31.6 | 40.6 | 14.3
Collingwood 261.7 | 882 133.7 [50.8 | 19.4 [80.3 | 30.7 | 424 | 16.2
Essendon 2799 [101.1 1361 [488 | 174 [873 | 312 | 42.7 | 15.2
Fremantle 2623 | 97.7 1373 |468 | 17.8 |77.0 | 29.4 | 40.8 | 15.5
Geelong 272.1|101.1 1372 [51.6 1 19.0 [81.7 1 30.0 | 37.7 | 13.8
Hawthorn 269.9 [ 100.0 1 37.1 |409 | 152 [879 | 326 | 41.1 | 15.2
Melbourne 2514 | 855 1340 [444 | 176 803 | 319 | 413 | 164
North 252.7 | 105.7 1 41.8 [40.0 | 158 |654 | 259 | 41.6 | 16.5
Melbourne : : : :
Port Adelaide 256.9 [ 103.1 1 40.1 [40.6 | 158 |76.7 | 299 | 36.4 | 14.2
Richmond 2553 | 101.7 1 39.8 [38.0 | 149 [75.0 | 29.4 | 40.6 | 159
St.Kilda 275.0 | 101.4 1369 |47.8 | 174 |83.7 | 304 | 421 | 15.3
Sydney 268.5| 96.8 136.1 [482 , 179 [81.1 , 302 | 424 , 158
West Coast 2700 | 955 1354 [499 | 185 |84.8 | 314 | 399 | 14.8
Western 2702 | 945 1350 [532 1 19.7 |79.6 1 295 | 43.0 i 159
Bulldogs : | : :
Average 266.3 | 99.0 1372 [46.6 | 17.5 |79.9 | 30.0 | 40.6 | 15.3

4. COMPETITION DATA BY RESULT

In 1997 the team that had the most number of disposals in the game won seventy-five
percent of all matches. The difference in the average number of disposals between
winning and losing teams as well as the percentage of teams that win given that they
outnumber the opposition in a particular disposal method are shown in Table 4.

Table 4

Differences between winning and losing team’s disposal averages.

Variable Winner Loser Difference % Win
Kick Long 104.2 93.9 10.3 83.2
Kick Short 51.5 419 9.6 75.6
Kick Ineffective 27.6 27.8 -0.2 52.2
Kick Clanger 8.6 8.9 -0.3 47.2
Handball Effective 83.4 76.5 6.9 60.9
Handball Clanger 4.0 4.3 -0.3 45.5
Total 279.3 253.3 26.0 75.4

On average the winning side had 26 more disposals than the losing side. This
included 10 more effective long kicks, 10 more effective short kicks and 7 more
effective handballs. The winning side averaged 11% more effective long kicks, 23%
more effective short kicks and 9% more effective handballs than the losing side.
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Effective long kicks were the best predictor of a match result with 83% of teams who
had the majority of effective long kicks in a match winning.

5. TEAM DATA BY RESULT

In 1997 the average side had an extra 10 more effective long kicks when they won
compared to when they lost. Table 5 shows the difference and percentage difference
comparisons of each team’s win/loss averages. The percentage difference is
calculated as the increase in percentage between the winning and losing averages.
The values that are the most distant from the competition averages are of the most
interest because it is these figures that can reflect a team’s strength or weakness.
Essendon and West Coast had the biggest differences between win/loss averages of
any club for effective long kicks with Essendon averaging an additional 24 long kicks
and West Coast an extra 22 when they won. Brisbane were up 57% on effective short
kicks when they won whereas Western Bulldogs had about the same number of short
kicks when they won as when they lost. West Coast averaged 17 more effective
handballs when they won whereas teams such as Hawthorn, Melbourne and the
Western Bulldogs all averaged more handballs when they lost than when they won.

Table 5

Differences between team’s winning and losing averages.

KKL KKS HBE
Team
Diff %Diff Diff %Diff Diff %Diff

Adelaide 3.4 3.1 94 224 12.9 19.7
Brisbane 5.6 5.8 21.8 57.4 7.8 10.8
Carlton 12.1 12.4 6.4 13.8 12.4 14.8
Collingwood 8.0 9.5 11.1 24.2 10.8 14.3
Essendon 23.9 26.2 11.6 26.3 4.7 5.5
Fremantle 13.5 14.8 4.7 10.6 11.7 16.4
Geelong 7.5 7.8 9.3 20.6 6.2 8.1
Hawthorn 4.6 4.7 11.1 30.2 -2.3 -2.6
Melbourne 6.2 7.3 54 12.4 -4.6 -5.7
North 4.1 3.9 11.3 33.4 12.7 21.7
Melbourne

Port Adelaide 2.9 2.8 9.9 27.4 13.8 19.8
Richmond 3.0 3.0 16.1 52.6 2.8 3.9
St.Kilda 4.6 4.7 94 22.6 5.2 6.5
Sydney 17.3 19.8 5.8 13.0 11.0 14.6
West Coast 22.3 27.1 35 7.4 17.2 23.0
Western 12.9 14.9 0.1 0.2 -3.3 -4.1
Bulldogs

Average 10.3 11.0 9.6 22.9 6.9 9.0
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6. OPPONENT EFFECTS

It is possible to see how the opposition performs against each team in order to get a
better understanding of the characteristics of a particular side. Table 6 shows the
difference between winning and losing opponents against each team for the 1997
season. Teams that beat Brisbane and Richmond averaged about 19 more effective
long kicks than teams that lost to these two clubs. This can be compared with the
average difference of 10. Teams that beat Essendon averaged 4 less effective long
kicks than the teams that lost. Teams that defeated Brisbane, Melbourne, Sydney and
West Coast all averaged a lot more effective short kicks than the teams that were
beaten by these sides. Teams that beat North Melbourne averaged slightly less short
kicks than the teams that lost. Teams that beat Collingwood, Melbourne and
Richmond had a higher handball average than the teams that lost to them. Teams
that beat North Melbourne and St.Kilda handballed a lot less than the sides who lost
to them.

Table 6
Differences between winning and losing opponent’s averages against each team.

KKL KKS HBE
Team
Diff %Diff Diff %Diff Diff %Diff

Adelaide 15.9 16.7 7.5 16.2 7.8 9.4
Brisbane 19.1 20.5 16.0 43.7 12.4 15.3
Carlton 13.7 14.2 4.7 11.3 0.0 0.0
Collingwood 4.6 5.0 8.7 18.8 15.7 22.6
Essendon -4.1 -4.1 4.6 9.2 4.0 5.3
Fremantle 10.5 10.8 3.0 8.0 5.8 7.1
Geelong 14.4 15.5 5.8 15.9 5.6 7.7
Hawthorn 11.8 12.6 11.2 28.3 12.3 18.5
Melbourne 5.7 6.3 17.1 41.9 21.0 31.6
North 16.6 18.0 -0.5 -1.2 -5.3 -6.6
Melbourne

Port Adelaide 13.1 14.1 3.4 6.8 114 14.4
Richmond 18.7 19.8 7.1 16.1 15.0 20.6
St.Kilda 14.3 15.5 10.3 28.7 -4.7 -6.7
Sydney 4.2 4.5 17.6 43.6 -2.0 2.4
West Coast 45 49 17.0 42.2 1.6 2.0
Western 8.3 8.7 8.6 20.6 8.6 11.5
Bulldogs

Average 10.3 11.0 9.6 22.9 6.9 9.0




An analysis of team statistics in Australian Rules football 243

7. ZONE PROFICIENCY

Because the data records whenever the ball enters a team’s attacking or defending 50-
metre zone, it is possible to determine the proficiency of each team in certain areas of
the ground. The ground has been divided into three zones with the proficiencies of
each zone measured in the following way -

Midfield - Ratio of a team’s inside-50 and the opposition’s inside-50.
Forward Line - Ratio of a team’s score and a team’s inside-50.
Back Line — Ratio of the opposition’s inside-50 and the opposition’s score.

Table 7
Ranking of Zone Proficiencies

Team % Position | Midfield | Forward Back
Adelaide 1 1 13 7
St.Kilda 2 2 1 10
Geelong 3 3 6 4
Sydney 4 4 9 1
North Melbourne 5 5 11 3
Collingwood 6 9 5 5
West Coast 7 7 7 2
Brisbane 8 8 8 6
Western Bulldogs 9 11 2 12
Carlton 10 12 10 8
Essendon 11 14 3 11
Fremantle 12 6 15 13
Port Adelaide 13 10 14 9
Hawthorn 14 15 4 15
Richmond 15 13 12 14
Melbourne 16 16 16 16

Table 7 shows the zone proficiency rankings for all teams in each of the three zones.
Although the AFL Ladder ranks teams on their number of wins, Clarke [2] has
shown that percentage is a better indicator of overall team performance. The teams
have been listed in their percentage order for the 1997 season. It is interesting to note
that the correlation between percentage position and the midfield proficiency
ranking is high. The only anomaly appears to be Fremantle who finished 12th on
percentage order but had a high midfield ranking of 6. The forward and back line
proficiency rankings are not highly correlated with finishing order. Essendon and
Hawthorn who finished 11th and 14th on percentage order had the 3rd and 4th most
proficient forward lines and Adelaide who had the highest percentage of any team
was rated as 13th. The back line rankings were more highly correlated than the
forward line rankings but still not significant. StKilda who finished 2nd on
percentage, was rated as having the 10th best back line in the competition.
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8. REGRESSION ANALYSIS OF TEAM DATA

Table 8
Summary of regression analysis of score difference versus factor difference.

Variable Coefficient p-value R-5q.
Kick Long 1.89 0.00 45.8%
Kick Short 1.30 0.00 33.6%
Kick Ineffective -0.22 0.57 0.2%
Kick Clanger -1.08 0.17 1.1%
Handball Effective 0.66 0.00 12.5%
Handball Clanger -0.91 0.35 0.5%

Table 8 gives the results of an individual regression analysis performed on each
method of disposal with the score difference. Kick Long, Kick Short and Handball
Effective were all found to be good predictors of score with their corresponding p-
values being close to zero and the R’ being reasonably high. Ineffective kicks, Kick
Clangers and Handball Clangers were all found to be poor predictors of score with
all of these variables having high p-values and a low R” value. The above coefficients
do not change drastically if a multiple linear regression is performed. If all of the
disposal methods are regressed together with the score difference an R* value of
66.0% is obtained.

The kick long regression coefficient of 1.89 implies that a team would expect to be in
front of their opposition by about 2 points for every extra long kick that they had in a
match. If a side had 10 more long kicks than their opposition for the game then the
estimate of their winning margin would be 10 x 1.89 = 18.9 points. The data suggests
that long kicks are worth about one and a half times a short kick and that handballs
are worth half a short kick as far as the score difference is concerned.

9. CONCLUSION

There is a wealth of performance statistics that can be analysed in various ways to
determine the bearing that these statistics have on the result of a match. Clearly
different teams have different playing profiles and these become more evident when
the data is broken down into more detail. Kicks are the most important predictor of
match result with effective long kicking seemingly being the key to a team’s success.
If a handball were to be rated as one point, short kicks would be rated as about two
points and long kicks three points. This result could form the basis of a player
performance rating system in Australian Rules Football.
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THE MATHEMATICS OF BICYCLING: PART II

W.H. Cogill’

Abstract

A previous note Cogill [1] considered the energy of a bicycle and its components.
The energy needed to propel a bicycle can be decreased if the mass of the rotating
parts is decreased. The present note considers the overturning moment on a
bicycle. Apart from imbalance on the part of the rider, the overturning moment is
due to the gyroscopic effect caused by turning the front wheel. The effects of the
other rotating parts, the rear wheel and the chain wheel, are minor and are
neglected at this stage.

1. INTRODUCTION

The object of this note is to identify the restraining forces which act on a bicycle, and
which must be corrected by the rider to allow the bicycle to continue moving
forwards. The restraining forces are composed of the control by the rider, gradient,
wind, frictional and rolling energy losses. The forces vary with the terrain and with
the type and condition of the bicycle. Factors are indicated which may influence the
stability of a bicycle during steering.

2. NOTATION

L Lagrangian P vector moment of momentum

T kinetic energy I moment of inertia of front
wheel, in axial direction

Vv potential energy 9 ratio of lateral to axial moments
of inertia of front wheel

N Torque vector o angular velocity of front wheel
as a vector

q Generalised co-ordinates w,,0,0,0, componentsof angular velocity

x,y,z  Spatial co-ordinates

M vector moment k' vectorial direction of original
rotation of bicycle wheel

r radius of bicycle wheel Q vectorial angular velocity of

handlebars, front fork and rider

1

30 Milford Street, Randwick NSW 2031
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3. ENVIRONMENT

A bicycle is constrained vertically by the road surface, and laterally by the
restrictions of the available surface. A bicycle therefore moves along the line of
intersection of two curved spaces, and is a system having one degree of freedom. An
on-road bicycle is restricted by the road pavement, and an off-road bicycle is
restricted by the intended course. Random imbalances occur due to unevenness in
the surface. The rider corrects the imbalances by turning the handlebar in order to
counteract the overturning moment caused by the imbalance. Leaning the bicycle, in
the opposite direction to the momentary imbalance, is a valid correction to the
imbalance. However, the bicycle and rider respond more quickly to turning the
handlebar than to leaning.

4. DYNAMICS OF THE SYSTEM

The momenta of the bicycle frame and rider depend on their mass and velocity only:
the momenta of the rotating parts depend in addition on the angular velocities of
rotation of each part. The corrective torque applied to the handlebar depends upon
the momentum of the front wheel primarily, but also on the momenta of the rear
wheel, the rotating pedals and the chain wheel. Therefore not only the
responsiveness of a bicycle depends on the momentum and therefore on the mass of
the rotating parts, but also the power supplied by the rider depends on the kinetic
energy and therefore on the mass of the rotating parts: kinetic energy lost due to
impact with road obstructions and irregularities in the surface is replaced by the
rider. This energy is proportional to the mass of the rotating parts. This explains the
cyclists' rule, based on experience, that a saving in rotating mass is more to be
desired than a saving in the mass of the frame, which undergoes only a forward,
non-rotational, movement.

In executing an intended turn, experienced cyclists tend to reverse the turning
operation: they first lean the bicycle, then turn the handlebar in order to compensate
for the overturning moment caused by the leaning. Once a turn is commenced, minor
variations in direction caused by the road-surface irregularities or obstructions can
be corrected by turning the handlebar, as in normal straight progression. There is a
resistance to turning the handlebar. This resistance is provided almost entirely by the
momentum of the rotating front wheel. It is proportional to the moment of inertia of
the front wheel, and to the square of its angular velocity. For this reason, cyclists
attach more importance to reducing the mass of all rotating parts especially that of
the front wheel, than to reducing the mass of the bicycle and rider.

Gallavotti [2] gives expressions by means of which the angular velocity in any one
direction of a gyroscopic mass can be expressed in terms of the angular velocties in
the remaining two directions.

10’ +6 1}, +6 I} =2T = constant )

I'o? +0°T'0} +6°Pw’ =[Iw]’ = constant
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We take the moment of inertia I to be that of the bicycle and rider in the transverse
direction, the z-direction, in the horizontal direction at right angles to the direction of
movement of the bicycle.
Lo, -0,0,(I,-1,)=N|,
Lo,-w,0,(I,-1)=N,,
Lo,-ww,(I,-1,)=N,.

In the absence of torque applied to the front wheel, these equations can be written

Lo, =w,0,(1,-1,),
Lo, =w,0,1;-1,),
Lo,=0,0,(I-1,).

These equations relate the angular acceleration of overturning the bicycle to the
angular accelerations of the front wheel and the handlebar rotation. The equations
are integrable, although the result is in terms of elliptic functions and is not
illuminating. A graphical construction exists(Norwood [3] and Goldstein [4]) and
shows the behaviour of the inertia ellipsoid relative to the invariable plane.

The expression for the relationship between the applied moment and the parameters
of a gyroscopic system is as follows

90 i L 0- 1w, &
a *Tgldhe.

I
M=—-=o—+2(6-1)
A useful form of this expression is given by Joos [5], as follows

I dQ . dk' 1 dQ .
— + 1w —

M = —
0 dt todt 0 dt

+1o ,[Q, k']

The main part of the angular momentum is J@ ., denoted by P . The term

1dQ, is the effective moment due to the movement of the bicycle frame and rider.

t
It is negligible under the initial conditions, i.e. before the bicycle has started to
overturn. The moment which causes the bicycle to overturn is then given by Joos [5]
as follows

dk'

M=P—
dt

= P[QK'] (2)
The two components of the overturning moment are directly proportional to (i) the
axial angular velocity of the front wheel and (ii) the angular velocity of the rotation
of the handlebar. Assume that the front wheel has a mass equal to one kilogramme.
The moment of inertia of a standard bicycle wheel having a diameter of 700mm, and
of 1 kg mass, is 1.0r"2 = 1.0 ( 0.35)"2 = 0. 1 kg.-m”2. The overturning moment per
unit of 1.0 kg.-m”2 of inertia is shown in Figure 1.
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Karnopp [6] suggests that the inverse of Equation (1) can sometimes be obtained, if
the system is sufficiently simple. The inverse yields the rates of change of the
momentum vectors needed to cause a given overturning moment.

100]//1

80
70+
60
50
40+
30
20+
10
0-

Overturning moment(N-m.)

Wheel
velocity
in

Handlebar rotation(rad./sec.) 10 11 rad./sec.

Figure 1: Overturning moment due to handlebar rotation

In Figure 1, the maximum wheel velocity is 10 radians per second. For wheels having
a diameter of 700mm., this corresponds with a road speed of 7 m.sec, or 25.2 km/hr.
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OPTIMIZING THE SHOT PUT

Neville J. de Mestre’, Mont Hubbard’ and John Scott’

Abstract

When a projectile is released from a height above the impact plane, the range
depends on this height, the release speed and the release angle. Experiments were
carried out on three shot-putters to seek a relationship between these three initial
parameters for the trajectory.

Using this relationship as a constraint, the optimal conditions of release can be
determined which will produce a maximum value for the range for any particular
athlete.

1. INTRODUCTION

Film studies by Cureton [1] and Dessurealt [2] indicate that elite shot putters release
the shot at an angle to the horizontal somewhat less than 45°. This is partly because
the level of release is approximately 2m higher than the level of impact. There have
been a number of articles (Lichtenberg and Wills [3], Trowbridge and Paish [4],
Burghes, Huntley and McDonald [5], Townend [6]) which have analysed the
situation, but all the models derive a formula for the optimum angle of release based
on an assumed independence between the angle of release, the height of release and
the speed of release. This assumption does not seem to be physically realistic since it
appears to be easier to use the shoulder and arm muscles to project the shot
horizontally than vertically.

Experiments were carried out at Davis, California with three college athletes (two of
whom were of high standard). From the data, possible relationships between the
release conditions were considered. The most appropriate is used as a constraint
relation for calculating the angle of release for maximum range. To our knowledge
the only investigations carried out previously to find a constraint relation were
conducted by Red and Zogaib [7] using a 1.14 kg ball, and Karo [8] using a regular
shot. Red and Zogaib found that the release speed decreased linearly with angle,
while Karo's experiments were inconclusive. Neither included height of release in
their respective relationships.

School of Information Technology, Bond University, Gold Coast Qld 4229
School of Mechanical and Aeronautical Engineering, University of California, Davis, USA
School of Management Systems, Waikato University, New Zealand
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2 SHOT-PUT TRAJECTORY EQUATIONS

Consider a shot of mass m and diameter D released from an athlete's hand at a height
h above the athletic field with release speed v, and release angle o. The point of
release is chosen as the origin of a 2-dimensional co-ordinate system with Ox in the
horizontal direction of the throw and Oy vertically upwards (Figure 1).

Figure 1: Shot put geometry

The equations of motion for the trajectory of the shot are

. 1 o L2\}

mx=——2-pACDx(x2 +y2) (1)
. 1 . .2\}

my =~—pACpy(x* +y°)’ ~mg @)

where p is the density of air, A is the cross-sectional area of the shot, Cp is the drag
coefficient, g is the acceleration due to gravity and a dot denotes differentiation with
respect to time t. For a shot travelling at its usual speeds along its trajectory the drag
coefficient can be taken to be a constant. Nevertheless these coupled differential
equations are still non-linear and difficult to solve analytically. A solution for the

speed v = (,-(2 _,_}-,2)5 of the shot can be obtained as a function of its tangent angle
arctan (}" / X) at any position on the trajectory, but explicit expressions for x and y as

functions of t can only be obtained as integrals which have to evaluated numerically
over definite limits.

The initial conditions for the problem are that
x=0, y=0, x=vycosa, y=Vysina (3)

when t = 0. The problem for the athlete is to generate a set of initial values for vq, o
and h so that x is a maximum when y = -h.
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Non-dimensionalisation of this differential system using x = voX/ g, Y=V, Y/ g,
t=v,T/g yields

X = —eX(X2 + Yz)E (4)

¥ =—eY(32+Y2) -1 (5)
with

X=Y=0, X=cosa, Y=sinot whenT=0 (6)

and the drag-to-weight ratio
e =pAC, vy/(2mg) 7)

where a dot from here on denotes differentiation with respect to T.

3. EXPERIMENTS

Three shot putters from the University of California (Davis) track-and-field team
threw the same shot for 49 different experiments. One athlete (Allan Babayan) was in
the top twelve at National level, one (Joey Taylor) was at College level and the third
(Jeff Blakefield) competed regularly within the university at local meets. All three
used the new rotary action and released the shot without stepping over the foul
board. Babayan made 22 measured throws, Taylor 14 and Blakefield 13. Each athlete
was asked to produce a set of relatively-high initial-angle throws, normal throws and
relatively-low initial-angle throws.

An Expert Vision Motion Analyser was used to determine the initial angle of release,
speed of release and height of release for each throw.

The distance of each throw was measured by tape from the estimated position of
release. The results are given in Tables 1, 2 and 3, with results presented in increasing
order of release height.
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Table 1

Throwing data for Allan Babayan

Release Release Release Type of Calculated | Measured
height h speed vy angle o release throwing throwing
(m) (ms?) (degrees) aimed for distance distance

(m) (m)
1.847 11.724 44.369 Normal 15.342 15.34
1.849 11.815 44.872 Low 15.560 15.56
1.862 11.760 42.274 Low 15.550 15.55
1.865 11.805 35.567 Low 15.645 15.65
1.870 11.948 36.664 Low 16.029 16.03
1.893 11.609 37.828 Low 15.331 15.33
1.907 11.986 33.666 Low 16.001 16.00
1.911 11.830 44.517 High 15.774 15.77
1.927 11.667 45.002 Normal 15.297 15.30
1.942 11.615 43.340 Low 15.387 15.39
1.969 11.647 41.132 Normal 15.586 15.59
1.987 11.215 45.460 High 14.408 14.41
2.000 11.221 43.118 High 14.635 14.63
2.005 11.381 46.441 High 14.661 14.66
2.028 11.431 44.988 High 14.991 14.99
2.040 11.837 37.740 Low 16.210 16.21
2.042 11.681 39.598 Normal 15.892 15.89
2.074 11.633 45.491 High 15.483 15.48
2.082 11.102 44.867 High 14.345 14.35
2.087 11.576 38.895 Normal 15.681 15.68
2.103 11.890 38.027 Low 16.480 16.48
2.134 11.591 43.460 Normal 15.607 15.61
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Table 2
Throwing data for Jeff Blakefield
Release Release Release Type of Calculated | Measured
height h speed vg angle o release throwing throwing
(m) (ms) (degrees) aimed for distance distance
(m) (m)
1.811 10.925 31.272 Low 12.770 12.77
1.816 11.245 34.740 Low 13.858 13.86
1.862 10.904 35.689 Low 13.257 13.26
1.955 9.926 48.078 Normal 11.103 11.10
2.002 10.657 41.746 Normal 13.013 13.01
2.009 9.876 39.724 Low 11.395 11.39
2.016 10.913 37.760 Low 13.640 13.64
2.060 10.611 43.356 Normal 12.923 12.92
2.197 10.215 41.163 Normal 12.308 12.31
2.224 10.049 47.447 High 11.580 11.58
2.288 10.099 43.770 High 11.978 11.98
2.371 10.298 48.210 High 12.151 12.15
2.375 9.710 48.410 High 10.911 10.91
Table 3
Throwing data for Joey Taylor
Release Release Release Type of Calculated | Measured
height h speed vg angle o release throwing throwing
(m) (ms1) (degrees) aimed for distance distance
(m) (m)
1.973 11.794 30.270 Low 15.125 15.12
2.025 11.393 40.852 High 14.882 14.88
2.070 11.645 29.868 Low 15.081 15.08
2.083 11.462 30.273 Low 14.675 14.68
2.104 11.139 35.526 Normal 14.387 14.39
2.119 11.335 34.953 Normal 14.863 14.86
2.122 11.137 42.499 High 14.372 14.37
2.125 11.244 42.891 High 14.824 14.82
2.145 11.064 38.529 Normal 14.378 14.38
2.189 10.988 37.454 High 14.224 14.22
2.209 11.035 43.898 High 14.442 14.44
2.210 11.411 34.366 Normal 15.162 15.16
2.213 11.396 30.049 Low 14.783 14.78
2.219 11.607 34.575 Normal 15.743 15.74
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The mean throwing distance achieved by Allan Babayan was 15.45m, by Jeff
Blakefield was 12.38m and by Joey Taylor was 14.78m. Clearly Jeff Blakefield was not
able to match the release speeds of the other two throwers, although he threw over a
similar range of angles to Allan Babayan. Joey Taylor was able to throw with release
speeds that were just less than Allan Babayan’s, but over a smaller range of angles.

The type of release angle aimed for was nominated in advance. The correlation
between this and the actual release angle achieved was very poor for Babayan and to
a lesser extent Blakefield who seemed not able to differentiate between normal and
high throws. On the other hand Taylor was excellent in throwing at the nominated
type of release angle, except for one throw.

Taylor was the only athlete whose best throw was a nominated normal angle of
release. Blakefield’s three longest throws and Babayan’s four longest throws were all
achieved when they deliberately tried to throw with a lower-than-normal release
angle.

4. OPTIMIZATION WITHOUT AIR DRAG

The shot used in the experiments had a mass (m) of 7.328kg and a circumference of
0.397m. Air density at Davis on the day of the experiment was 1.226 kg m=3 with
g = 9.7935 ms~2. For a spherical shot the drag coefficient is Cp = 0.45 for speeds in the
range of the shot put. With a maximum speed of 12 ms-! (almost achieved by
Babayan) the value of € = 0.006942 = 0.007, hence ¢ is very small for all experimental
throws.

Therefore X and Y can be expanded in a perturbation series as follows

X=X, +€X, + 0(e?) (

8)
Y =Y, +eY, +0(*)

The zeroth-order approximations to equations (4)-(6) are

with X, = Yo =0, X, = cosa, Y, =sinot when T = 0. These show that air drag is not
included in the zeroth-order approximations, and equations (8) indicate that it will
have less than 1% effect on the range.

The solutions are
X, =Tcosa )

Y, =Tsina—3T? (10)
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Now y = -h transforms to Y = -H with h=v;H/g and so the zeroth-order time of
flight for the shot is obtained from equation (10) as

1
2

Tg" = sino + (2H + sin’cx)

The corresponding range is obtained from equation (9) as

—

X = coson[sinoc +(2H + sinza)?} (11)
To throw the shot, each athlete used a rotary motion starting in a slightly bent
position with the shot resting on his hand which itself was placed at the junction of
his neck and shoulder. The athlete then moved across the throwing circle using 1%
rotations about a vertical axis superimposed on vertical and horizontal velocity
components. These raised him upwards and forwards to the edge of the throwing
circle. During this time his arm extended during the last 3 revolution to its fullest

extent and then released the shot. Before release, the shot itself travelled in an
oblique upwardly-spiralling curve.

If hy is the height of the throwing shoulder at release, L is the length of the throwing

arm, and 0 is the angle of the extended throwing arm to the horizontal, it is clear
(Figure 2) that
h=h,+Lsin0

Note that h;, and L can be considered as constant for each throw by a specific athlete,
and that the release height h only changes because 6 changes.
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Figure 2: Release height geometry

Now the angle of release oo would be the same as the angle of the arm 8 if the athlete
threw with his shoulder stationary. Based on this observation a simple

approximation to the relationship between o.and H (= gh/ v3) would be
H=K+Bsina (12)
A least-squares fit of the data for each athlete produces the following values:

Babayan , K =-0.1844 , B =0.4934
Blakefield , K =-0.1506 , B =0.5141
Taylor , K =0.0400 , B =0.2700
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With equation (12) substituted into equation (11) the non-dimensional range is given
by

ng) = cos oc[sin o+ (ZK +2B sin o + sin? oc)E ]
Differentiation with respect to o yields

ax{p {B+(1—2K)sina—3B sin® 0. — 2sin® a}

do

=1-2sin*o+

1

(2K +2B sina +sin?ar)*
and so the critical point for optimum range is given by the solution by
(2sin” ot~ 1) (2K + 2B sin o, + sin” & ) = B + (1 - 2K) sin o - 3B sin” ot - 2 sin” 0,

This equation was solved by Mathematica for a numerical solution near sin o = 0.6
using the values of K and B for each athlete. The results are given in Table 4.

Table 4 Optimum Release Characteristics

Athlete Optimum H Optimum o (degrees) | Distance for max v,(m)
Babayan 0.1656 45.18 16.78
Blakefield 0.0294 42.99 15.32
Taylor 0.1881 44.46 16.54

It has not been established that the maximum achieved throw is possible for the
optimum conditions, but the results seem to indicate that the athletes are capable of
extending their personal best throws for the experiments.

Further work is needed to establish a more complicated constraint relation similar to
equation (12), and this should be based on the dynamics of the shot put throw before
release.
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